
1

Dirk Koch (koch@ifi.uio.no)

Partial Reconfiguration on Partial Reconfiguration on FPGAsFPGAs

2

Introduction: Terms and Definitions
Definition of the term „Reconfigurable Computing“ (RC)

� A good definition for a reconfigurable hardware system was
introduced with the Rammig Machine (by Franz Rammig 1977):

… a system, which, with no manual or mechanical inter-
ference, permits the building, changing, processing and
destruction of real (not simulated) digital hardware

� Reconfigurable computing (RC) is defined as
the study of computation using reconfigurable devices

This includes architectures, algorithms and applications

� The term RC is often used to express that computation is
carried out using dedicated hardware structures (often utilizing
a high level of parallelism) which are mapped on reconfigurable
hardware (this is opposed to the sequential von Neumann
computer paradigm!!!).

3

Introduction: Example

A[7]

42

24

Q[7]

for i = 0 to 7 do {
 tmp = A[i] & x"F";
 tmp = tmp + 42;
 Q[i]= tmp * 24;
}

 LDI reg_i,0
L1:ANDI r_tmp,$i,xF
 ...
 BLI reg_i,L1

instruction
stream

data
stream

von Neumann computer

A[0][3..0]

42

+

24
* Q[0]

A[1][3..0]

42

+

24
* Q[1]

A[7][3..0]

42

+

24
* Q[7]

...

reconfigurable computing

pipelining

loop unrolling

A[0]

42

24

Q[0]...
... ...

RC benefits
among von Neu-
mann machines:

• fast parallel
processing
- pipelining
- loop transform.

• no instr. fetch
(no extra
memory access)

• no instr. decode

• possibility of
dedicated instr.
(e.g., MAC)

• lower power

slow and
power hungry

4

Introduction: Example (Benefits)
Reconfigurable computing permits to tradeoff between performance
(speed and/or latency) and area (number of used primitives) of the
reconfigurable architecture. This requires to solve the following steps:

� Allocation: defining the resources / functional blocks
which are allowed for implementation

� Binding: defining which operation is executed on a particular
allocated resource

� Scheduling: defining the time when an operation is executed

Allocation, binding, and scheduling are fundamental problems that
have to be solved at different level of abstraction (e.g., system level,
architecture level, or all refinements.
This holds for both the hardware and the software part!

Further: RC removes architectural limitations (e.g., like shared
memory communication in GPUs)

5

Introduction: Terms and Definitions
These RC benefits exist also for dedicated hardware (ASIC1,
ASIP2), but reconfigurable computing allows more:

� Adaptability: react on environment changes or different
workload scenarios by adapting the behavior and structure
of a system (e.g., scaling a system with configuring more
instances of an accelerator module to a recenf. device)

� Customization (post fabrication): allows for different features
for individual systems

� Updatability: update to new standards, bug fixes,
after sales business with new features „hardware apps“

Possible by (re)configuration: Configuration (and respectively
reconfiguration) is the process of changing the structure of a
reconfigurable device at start-up-time (respectively run-time).
Mostly this means: sending new configurations to the device
ASIC1: application specific integrated circuit; ASIP2: application specific processor

6

Introduction: Terms and Definitions
Reconfigurable architectures

� Coarse grained:
ALU-like primitives with word
sized routing channels
� Examples: NEC-DRC, PACT XPP,

Silicon Hive, Ambric, Picochip, TILERA, Nvidia GPGPU
� Advantage: extreme performance for domain specific tasks

� Fine grained: bit level primitives (e.g., look-up tables (LUTs))
and single wire routing
� Examples: plenty of academic architectures, Atmel FPGAs
� Advantage: can virtually implement anything
� But often poor performance and/or chip utilization

� Hybrid: fine-grained fabric with additional coarse-grained
primitives (e.g., hardware multipliers or CPUs)
� Examples: Xilinx Virtex families (some with embedded PPC)
� Aims at combining the advantages of both

7

Introduction: the FPGA-ASIC Gap
Hybrid FPGAs are dominating reconfigurable market, but there is a

� Gap between reconfigurable FPGAs and dedicated ASICs

� Note that the gap towards a programmable von Neumann
machine could be even orders of magnitude higher!

� also: lack of productive design tools (and skilled engineers)

Solution: partial run-time reconfiguration (PR):
reusing the resources of a reconfigurable architecture by
multiple modules over time. Only parts of a system might be
updated while continuing operation of the remaining system.

*Kuon & Rose: Measuring the Gap Between FPGAs and ASICs, in Tr. On CAD, 2007.

~ 3-5 x slowerclock speed
~ 14 x moredynamic power
~ 18 x largerchip area

FPGA versus ASIC@ 90nm process*

8

FPGA-based Systems everywhere, but not PR

� FPGA-based systems are omnipresent in our daily life.

Each A380 contains more than
700 Actel FPGAs, e.g., for:

� Engine control & monitoring

� flight computers

� braking systems

� safety warning systems

9

What we should know about FPGAs
� Slow (~300 MHz), but highly parallel execution >1000 Operations

� Moderate I/O throughput, but >1MB @ >1TB/sec (on-chip)

� Difficult VHDL programming, but C++ is coming up

if (old_position) then
case position is

42: if free then

for i=1 to � loop
numbercrunching;

data flow oriented vs. control flow dominated

10

PR Advantages: Area Saving

� Networking:
Adapt to changing
protocols over
time

� Encapsulated
design of the
processing
modules

so
ur

ce
:w

w
w

.c
ai

da
.o

rg

dispatcher config.

VoIP

SSH

HTTP

FTP

configuration
repositoryFPGA network processor

11

PR Advantages: Area Saving
� Economics of ASIC- and FPGA designs

� FPGA buyers: - reduce unit cost
- after sail business

� FPGA vendors: more attractive for high volume designs

S
ou

rc
e:

 E
le

ct
ro

ni
c

N
ew

s
16

.0
3.

20
06

12

PR Advantages: Acceleration

� May alternatively allow to reduce clock frequency (and power)

� Lower latency might reduce buffer sizes

� Example: TLS/SSL, sorting (database acceleration)

� May also increase throughput

BA C

S0
S1
S2

A
B

C
t

A

S0
S1
S2

A B C

t

A B C A

BCABCABA C

S0
S1
S2

A
B

C
t

A

S0

S2

A B C

t

A B C A

A
C

time

latency S1

� Reduce latency by spending more area on submodules

13

PR Advantages: Faster Configuration
� Full FPGA bistream can currently be > 20 MB

� Flash memory performance 10-20 MB/s
(special high-speed Flash memories reach up to 100 MB/s)

� � Full initial configuration ~ 1-2 seconds in practice
an order of magnitude to slow for PCIe (setup within 100 ms)

� Solution: Bootstrapping using PR

conf. port

PCIe core

'empty'

boot
flash

Initial config. from boot flash

empty FPGA

conf. port

PCIe core

'empty'

boot
flash

Initial config. from boot flash

conf. port

PCIe core

'empty'

boot
flash

conf. port

PCIe core

'empty'

boot
flash

Initial config. from boot flash System config. via PCIe

conf. port

PCIe core

'empty'

boot
flash

conf. port

boot
flash

Initial config. from boot flash System config. via PCIe

PCIe core

14

PR Advantages: IP Reuse

High level of IP reuse ���� Adapt the component-based system
PR design flow for a general design methodology
Idea: take as much as possible from an existing environment and
add only the application stecific parts.

1980 1985 1990 1995 2000 2005 2010

10

100

1000

10 000

100 000

1 000 000

10 000 000

1

+58% / year
logic transistors/year

+21% / year
productivity in tr. per man-month

design gap

[International Technology Roadmap for Semiconductors]

15

PR Advantages: SEU* Compensation

� Smaller configuration SRAM cells

� Exponetial rise in the total amount

� � Increased risc of *single event upsets (SEU)

� Solution: Configuration Scrubbing
� Continous reconfiguration during operation (repair)
� Readback for SEU detection (before committing a result)

2000 2002 20102004 2006 2008

200 K

400 K

600 K

LUTs

100 K

300 K

500 K

V
ir t

ex
-II

V
irt

e x
- II

 P
ro

V
irt

ex
-4

V
irt

ex
-5

V
irt

ex
-6

1.2 M

V
irt

ex
-7

S
tra

tix S
tra

tix
-II S

tra
tix

-II
I S
tra

tix
-IV

S
tra

tix
-V

28 nm40 nm56 nm90 nm130 nm

LUT-4 era LUT-6 era

2000 2002 20102004 2006 2008

10 MB

20 MB

30 MB

5 MB

15 MB

25 MB

V
irt

ex
-II

V
irt

ex
-II

 P
ro

V
irt

ex
-4

V
irt

ex
-5

V
irt

ex
-6

???

V
irt

ex
-7

S
tr

at
ix

S
tr

at
ix

-II S
tr

at
ix

-II
I

S
tr

at
ix

-I
V

S
tr

at
ix

-V

28 nm40 nm56 nm90 nm130 nm

LUT-4 era LUT-6 erabitstream size

16

RC on FPGAs (Classification)
� Classification of (run-time) reconfigurable FPGA-based systems

FPGA-based systems

one-time configurable
Actel SXA family (antifuse)

ASIC substitution*
global

older Altera FPGAs
in field update*

passive1

Xilinx Spartan 3
active2

Xilinx Virtex families

partial

reconfigurable

� This lecture focuses on passive1 partial reconfiguration (interrupt
whole FPGA during reconfiguration) and active partial recon-
figuration2 (untouched parts continue execution) on FPGAs.

mode changing*
* Typical use case

17

Context-Switching on FPGAs
� Partial reconfiguration is also referred as context switching.
� What is the Context of an FPGA?

� “Context” denotes a “state” which is stored in memory
Located in: 1) FPGA fabric (technology level)

2) Modules (logic level)

2) State of a module
• Register snapshot
• RAM blocks
• External state

1) Present FPGA configuration

Access via configuration port Access via configuration port or
extra logic (e.g., scan-chain)

S
ou

rc
e:

 C
hr

is
to

ph
e

B
ob

da

18

Context-Switching on FPGAs
Technology level (FPGA)

Lo
gi

c
le

ve
l (

m
od

ul
e)

• Module runs forever
• Single configuration/
module context

• ASIC-like
(e.g., memory controller)

• Configuration swapping
• Run-to-completion model
(no module context is
considered at start)

(e.g., motion-JPEG)

• Multiple module contexts
• on a single configuration

(e.g., multi channel crypto)

• module preemption and
resuming

• Configuration swapping
• Transparent (like software)

• Examined at UIO in the
COSRECOS project*

dynamicstatic

dynamic

static

� All variants may co-exist in a reconfigurable SoC

*Website: http://www.matnat.uio.no/forskning/prosjekter/crc

Classification

19

Baseline Model of Partial Reconfiguration
The time-multiplex model:

� Activate one module exclusively within a reconfigurable region
� Swapping between modules by writing a partial bitstream to a

configuration port (defines the configuration time!)
� Bitstream might be written by the FPGA itself ���� selfreconfiguration
� Used by the tools from Xilinx and Altera

FPGA

reconfigurable region

MP3

video

phone

MP3

video

phone

internal configuration logic

surrounding system

configuration data (bitstream)

<=>

20

PR Time-Granularity (sub-cycle)
Tabula’s 3D Architecture
� 8 configuration planes
� Reconfiguration @ 1.6 GHz
� Within netlist reconfiguration

(uses forwarding registers
called „time via“)

8 folds @ 1.6 Ghz

200 MHz user clock

400 MHz user clock

21

PR Time-Granularity (sub-cycle)

� one memory access per time plane
(virtually 8 memory ports; holds
only when not space folding)

� Difficult to rate this approach:
extra multiplexer for plane
switching have to be
mapped on a 2D chip
� longer routing paths

� Difficult tools (manual ma-
nipulation or simulation)

� http://www.tabula.com

VA VAVA

a0b0a1b1a31b31

s0s1s31

...
VAVA

a0b0a1b1

s0s1

VAVA

a2b2a3b3

s2s3

VAVA

a4b4a5b5

s4s5

VAVA

a6b6a7b7

s6s7

time
via

... ...

...

VAVA

a28b28a29b29

s28s29

VAVA

a30b30a31b31

s30s31

time
via

traditional FPGA implementation

Example:
32- bit
adder

22

PR Time-Granularity (single-cycle)
Multi-context FPGAs
� originally proposed by

Scalera & Trimberger
� single cycle confi-

guration swapping
� idea: duplicating all

configuration bits
for each “plane”
and multiplexing between planes

� Problem: extra multiplexer required for each configuration bit
� All planes have to be mapped on a 2D chip (3D � 2D mapping)
� longer routing between the primitives <=> lower performance

� Bad idea for FPGAs: most of the FPGA die area is spent on confi-
guration SRAM cells) usefull only for coarse-grained architectures

� Better: multiplexing between different areas on the FPGA

23

PR Time-Granularity (multi-cycle)
Configuration by writing a new configuration bitstream to the device

� normal case for all FPGAs from Xilinx and Altera (starting with
the Stratix-5 family)

� rapid partial module swapping
(e.g., swapping within a frame in a video processing system)

� mode changing / field update
(typically used in combination with full FPGA reconfiguration,
e.g., in measurement equipment when changing settings
or for prototyping (ASIC emulation))

24

a) island style b) slot style c) grid style

m1 m2 m1 m2 m
3 m1 m2

m3

static part of the system unused reconfigurable area different modules

m
4

island style slot style grid style

PR in Time and Space
So far, we have only considered to have one module exclusively
placed with a reconfigurable region (temporal partial reconfigurati-
on) � extension to multi-module placement of partially reconfigu-
rable modules (spatial partial reconfiguration)
Possibilities for tiling the reconfigurable area into resource slots:

As smaller the slots, as lower the internal fragmentation (the waste
of logic resulting from fitting any sized module into a tile-grid (i.e.,
clustering the FPGA area into regular groups of resources))

25

PR in Time and Space: Efficiency
PR paradox: Runtime reconfiguration is brilliant, but not used!

m
3

m
4m1

cconst

m1 m2 m
3

m
4m2

cconstm5 m
6

M

M M M overhead

internal fragmentation

communication cost c

� Internal fragmentation is dominating the overhead
� Can be optimized with small slots � 2D placement

(but might result in additional cost for the communication)
� 2D enhances BRAM/DSP utilization
� 2D is obligatory for newer FPGA Architectures (Virtex-5/6)

Requires adequate on-FPGA communication architectures
� Buses
� Point-to-point connections

26

Optimal Resource Slot Size

Optimal slot size depends on the modules and communication cost

– =

� Internal fragmentation results from fitting modules into a grid of
fixed resource slots.

� Analog: storing files in a filesystem with fixed clusters
� Average overhead of a module set of modules:

l : resources in a slot
c : communication
mi : resources of module i

27

0
500

1000
1500
2000
2500
3000

50 25
0

45
0

65
0

85
0

10
50

12
50

14
50

16
50

18
50

20
50

22
50

24
50

0 5 10 15 20 25

Optimal Resource Slot Size

Result: optimal slot size ~200–300 LUTs or ~25–40 CLBs

� Impact of the resource slot size and the communication cost on
the average module overhead

� Scenario: 9701 modules with 300, 301, …, 10000 LUTs
with a communication cost of 0, 5, …, 25 LUTs per slot

av
er

ag
e

lo
gi

c
ov

er
he

ad

resource slot size in terms of LUTs

28

Optimal Resource Slot Size

Discussion:
� If mi >> l the overhead converges to l/(l-c), meaning that for

large modules (with many resource slots) the internal
fragmentation becomes neglible.

� The optimal slot size can be computed by differtentiating the
avarage module overhead with respect to the slot size l.

� As the ceiling function is discontinuous, its bounds are
considered:

� Lower bound: perfect fit
� Upper bound: one slot is

almost unused

l : resources in a slot
c : communication
mi : resources of module i

lll

l
l

29

Optimal Resource Slot Size
Discussion:
� Upper bound: one slot is

almost unused

� Worst case:

� Avarage
case:
(achievable
only with 2D
grid style
placement)

l
l

l
l

l

30

Optimal Resource Slot Size
One of the best published solutions:
� Hagemeyer et al., Design of

Homogeneous Communication
Infrastructures for Partially
Reconfigurable FPGAs
ERSA, USA 2007.

� Master and slave support (32 bit)
� 16 sockets (XC2V4000)
� Communication cost: 8554 LUTs

(~three 32-bit CPU-cores)
� No I/O support
� Resource slot size: 2560 LUTs

X

Catastrophic communication cost
and too large resource slots

31

The behavior or structure of a system
can be changed by small manipulations
of the configuration bitstream.
� Manipulation of the routing

(switch matrix multiplexer)
� Changing logic functions

example: AND � OR

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

LUT-value
AND gateA3, A2, A1, A0

LUT-value
OR gate

0 OOOO 0

1 OOO1 1

2 OO1O 1

3 OO11 1

4 O1OO 1

5 O1O1 1

6 O11O 1

7 O111 1

8 1OOO 1

9 1OO1 1

A 1O1O 1

B 1O11 1

C 11OO 1

D 11O1 1

E 111O 1

F 1111 1

A0
A1
A2
A3

0

1

F

FF

LUT values

Slice FF

PR Space-Granularity (bitstream)

32

� Relatively small configurable instructions can speed up
execution by at least an order of magnitude.
(NIOS, GARP, DISC)

� Typically non concurrent operation (blocking the ALU)
� Difficulty: instructions have a high pin count per logic

�Interfaces have to be ultra efficient!
� Different logic requirements �flexible instruction placement

Sometimes, even small modules can materially speed-up a system.
� Example: reconfigurable customized instruction set extensions

(e.g., with instructions for CRC, DES round, bit swapping)

result

OP_A OP_B

instruction

result

OP_A OP_B

instr.
conf.

instr.
conf.instruction

register fileregister file
a) b)

PR Space-Granularity (small modules)

33

logic memory

module
placement

options

L ML L L L ML L L L

M

L

L L L

L L L L

reconfigurable
FPGA region

� Difficulty: modules have different resource requirements
� Logic
� Memory
� Multipliers

� Placement restrictions
(string matching problem)

�Interfaces should allow two-dimensional module placement
� Further: placement impacts the communication!

Typically, systems consist of multiple concurrently working modules.

PR Space-Granularity (large modules)

m
3

m
4m1

cconst

m1 m2 m
3

m
4m2

cconstm5 m
6

M

M M M overhead

internal fragmentation

communication cost c

34

PR Space-Granularity (module coupling)
[1

] D
IS

C
N

IO
S

[1] Wirthlin and Hutchings:
DISC: Dynamic Instruction
Set Computer (FCCM 1995)

A
LU

reg file

ca
ch

e

memory

bus

RHW

� Reconfigurable HW
in parallel to the ALU

tightly coupled loosely coupled

complexity (size)

register file cache system memory

35

PR Space-Granularity (module coupling)
[1

] D
IS

C
N

IO
S

N
IO

S
 II

A
LU

reg file

ca
ch

e

memory

bus

RHW

� Reconfigurable HW
in parallel to the ALU

� Module may contain
own register file

tightly coupled loosely coupled

complexity (size)

register file cache system memory

37

PR Space-Granularity (module coupling)
[1

] D
IS

C
N

IO
S

N
IO

S
 II

M
.B

la
ze

� Coprocessor-like
coupling of the
reconfigurable HW

[2] Hauser and Wawrzynek (FCCM 97):

GARP: A MIPS Processor with
a Reconfigurable Coprocessor

A
LU

reg file

ca
ch

e

memory

bus

RHW

tightly coupled loosely coupled

complexity (size)

register file cache system memory

[2
] G

A
R

P

38

PR Space-Granularity (module coupling)
[1

] D
IS

C
N

IO
S

N
IO

S
 II

M
.B

la
ze

� Coprocessor-like
coupling of the
reconfigurable HW

� Decoupled by Fifo
channels (FSL-Fifo)

� Parallel execution

tightly coupled loosely coupled

complexity (size)

register file cache system memory

P
P

C
 V

4

[2
] G

A
R

P

A
LU

reg file

ca
ch

e

memory

bus

RHW

40

PR Space-Granularity (module coupling)
[1

] D
IS

C
N

IO
S

N
IO

S
 II

M
.B

la
ze

� Connect reconfigurable
HW to the memory bus

� Common FPGA-based
approaches require an
interface (in the easiest
case a “bus-macro”)

P
P

C
 V

4

[2
] G

A
R

P

tightly coupled loosely coupled

complexity (size)

register file cache system memory

A
LU

reg file

ca
ch

e

memory

bus

RHW RHW

interface interface

I/Omemory

41

On-FPGA Communication
Goal: an efficient on-FPGA communication architecture that
supports the grid-style module placement.

� Classification of different on-chip communication architectures:

source:

� for FPGAs: - buses (reading / writing of registerfiles and DMA)
- point-to-point links

(I/O-pin connection and data streaming)

On-Chip Communication

Point-to-point Interconnect Bus Network-on-Chip

Homogeneous HeterogeneCustom Uniform Hierarchical
shared Bus

Split bus

Custom Segmented Bus

42

On-FPGA Communication (History)
� Progress in Partial reconfiguration (physical implementation)

using the Xilinx tools over the last decade:

� Fundamental problem: binding of the partial module entity sig-
nals to fixed routing resources of the FPGA fabric „module plug“

'0''0' '1' '1''1' '0'

NAND

'1''1' '0''0''0' '1'

OR

static systemPR region

� „Xilinx Bus Macros“ for constraining the routing between the
static system and one or more PR regions (introduced 2002)
� Costs two TBUFs per signal wire (in terms of latency and area)
� Placement restrictions & device support

43

On-FPGA Communication (History)
� Progress in Partial reconfiguration using the Xilinx tools

over the last decade:

� „Slice-based Bus Macros“ (proposed by Hübner et al. in 2004)
� More flexible (higher density of wires, more placement options)

� Works with all Xilinx FPGAs (Virtex-II Pro: last FPGA with TBUFs)
� Costs two LUTs per signal wire (in terms of latency and area)

OR

"slice-based bus macro"

ORNAND

44

OR

"proxy logic"

NAND

On-FPGA Communication (History)
� Progress in Partial reconfiguration using the Xilinx tools

over the last decade:

� „Proxy logic“ (released for some devices by Xilinx in 2009)
� Automatic placement of anchor primitives
� Costs one LUT per signal wire (in terms of latency and area)
� Only provided for some devices

OR

"proxy logic"

� Same approach is used in the upcoming Altera PR flow

45

On-FPGA Communication

OR

"PR link"

„PR links“
Binding entity signals to the
wires crossing the border to
a reconfigurable module.

� No logic overhead, cleaner design flow, supports S6 (V5, V6)

NAND

46

The Simple Formula for Building Bus-based
Reconfigurable Systems

On-FPGA Communication: Buses
Bus macros are best suited to integrate modules into islands!
The following slides present structured communication architec-
tures for slot-based (1D) or grid-style (2D) module placement

47

ReCoBus Communication
All bus protocols can by implemented by the use of
four signal classes:

address
decode

address
write_data

read_data
interrupt_1

interrupt_2

R \ W

select_1
select_2

__

Master Slave 1 Slave 2

dedicated master
write signals

dedicated master
read signals

shared master
read signals

shared master
write signals

shared write shared read

dedicated write dedicated read

� Example: connecting an interrupt signal from a slave to an
interrupt controller is basically the same problem as connec-
ting a bus request from a master module to an arbiter

48

ReCoBus: Shared Read

� Homogeneous (=identical) logic and routing footprint inside each
resource slot

� Free module placement
� Deep combinatory path (slow)
� Massive resource overhead (has to replicated for each bit signal)
� Only suitable for a coarse-grained placement grid

�internal fragmentation

slot R-1slot 1slot 0

&&&&

selR-1

&&&&&&&&

≥≥≥≥1111

d
u
m
m
y

fits into
one LUT

module 0 module M-1

&&&&

data_out

selM-1

b)a)

&&&&

data_out

sel0

m
as

te
r

m
as

te
r

≥≥≥≥1111

data_out
sel1

data_out
sel0

data_out

≥≥≥≥1111 ≥≥≥≥1111

. . .

. . .

'0'

Shared read signals for connecting one selected module with the
static system:

49

ReCoBus: Interleaving
� Problem: the structure of a distributed read multiplexer chain is

unlikely for very fine-grained resource slot layouts:

� Logic overhead: 4/24 = 17%

D7..0

D15..8

D23..16

D31..24

'0'

'0'

'0'

'0'

Slot 1 Slot 2 Slot 3
reconfigurable area

52

ReCoBus: Interleaving
� Problem: the structure of a distributed read multiplexer chain is

unlikely for very fine-grained resource slot layouts:

� Logic overhead: 4/6 = 66%; very high latency!

D7..0

D15..8

D23..16

D31..24

'0'

'0'

'0'

'0'

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
reconfigurable area

53

ReCoBus: Interleaving
� Solution: multiple interleaved read multiplexer chains

� Low logic overhead, low latency and fine granularity!

D7..0D15..8

'0'
D31..24

D23..16

D7..0
D15..8

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
reconfigurable area

54

ReCoBus: Signal Alignment (1D)
� Example system:

� Alignment-multiplexer allow free module placement
� Interface grows together with the module complexity (size)

For example: a small UART might be connected using an 8-bit
data bus and a more complex Ethernet adapter with 32-bit

� The first LUT function of each chain (here rightmost) must be
changed to an AND gate or an external source is needed

11111111≥1≥1≥1≥1
&&&&

≥1≥1≥1≥1
&&&&

≥1≥1≥1≥1
&&&&

≥1≥1≥1≥1
&&&&

≥1≥1≥1≥1
&&&&

≥1≥1≥1≥1
&&&&

CPU en dout en douten douten douten dout

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8
Module 0

en dout

Module 1

static system runtime reconfigurable system

55

ReCoBus: Signal Alignment (1D)

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

D31...D24 D23...D16 D15...D8 D7...D0

0
0

0

start point & mux select value
used connection

unused connection

m1

� Assuming an 8-bit interface pro slot, it takes at least four
consecutive slots to provide the full interface size

56

ReCoBus: Signal Alignment (2D)

0 1 2 3 0 1 2 3

1 2 3 0 1 2 3

2 3 0 1 2 3

3 0 1 2 3

0

0 1

0 1 2

≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1≥1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

D31...D24 D23...D16 D15...D8 D7...D0

0
0

0

start point & mux select value
used connection

unused connection

0 1 2 3 4 5 6 7

0

1

2

3

x

y

m2

m1

m3

m4

slot3,6

slot indexing: sloty,x

� The signal interleaving scheme can be extended to implement
buses allowing to integrate modules in a 2D grid style.

57

ReCoBus: Dedicated Write Signals
� LUTs can be used to decode an address within the bus

(the table contains then a one-hot value, e.g. for addr. 0xA)

� For setting an address, LUT values can be exchanged:
� Using the configuration port,
� Accessing the table with the user logic:

SRL16 shift register primitive or distributed memory

0F

0E

0D

0C

0B

1A

09

08

07

06

05

04

03

02

01

00

value

Slice FF

A0
A1
A2
A3

0

1

F

FF

LUT values

A0
A1
A2
A3

0

1

F

FF

Sin

Sout

...

LUT in
SRL16 mode

58

ReCoBus: Dedicated Write Signals
� Architecture: uniformed distributed address comparator inside

the bus (implemented by SRL16 shift register primitives)

� Two-stage reconfiguration:
1. FPGA: initialize the shift register with 0xFFFF
2. Logic: configure address comparator and activate module

Q
15

4

EN
Din

module_reset

module_select

module_read

module sidebus side

bus_read

bus_enable
config_clock

config_data

fits into one
look-up table

reconfigurable select generator

Q
0

&

11 1 11 1 1 1 1 1 1 1 1 1 1 100 0 00 0 0 0 0 0 1 0 0 0 0 0

60

slot 0 slot 1
re

se
t

se
le

ct
re

ad
_e

n

slot 2 slot 3 slot 4

re
se

t
se

le
ct

re
ad

_e
n

slot 5
module 1 module 2

CPU

bus
logic

bus_readbus_enable config_clock
config_data

d
u
m
m
y

module
select
logic

select
module

logic

ReCoBus: Dedicated Write Signals
� Arrangement of the address comparators

� Allows module relocation
� Multiple instances of a module

(individual module addresses)
� Automatic reset generation
� No interference by the reconfiguration process (Hot-Plug)
� Extra register file look-up for alignment multiplexer control

Q15

4E
N

D
in

m
od

ul
e_

re
se

t

m
od

ul
e_

se
le

ct

m
od

ul
e_

re
ad

m
od

ul
e

si
de

bu
s

si
de

bu
s_

re
ad

bu
s_

en
ab

le
co

nf
ig

_c
lo

ck

co
nf

ig
_d

at
a

&

fit
s

in
to

 o
ne

lo
ok

-u
p

ta
bl

e

re
co

nf
ig

ur
ab

le
 s

el
ec

t g
en

er
at

or

Q0

61

ReCoBus: Dedicated Write Signals
� Assuming an 8-bit interface pro slot, it takes at least four

consecutive slots to provide the full interface size

� Address mapping: the whole ReCoBus subsystem appears like one
module in the address space of the system

� Up to 15 modules can be addressed (one encoding (0xF--) is used
for the case that no module is selected)

� Wildcard addressing for multi cast operation (wired OR on read)

module_select00
1
2
3
4
5
6

8
9
A
B
C
D
E
F

7

0
1
2
3
4
5
6

8
9
A
B
C
D
E
F

7

reserved
module_selectE

FF

00
01

FE.
.
.

module
register

file

0123456789101112131415

&&&&
≥1≥1≥1≥1
≥1≥1≥1≥1
≥1≥1≥1≥1
≥1≥1≥1≥1

module
select
logic

selectmaster

...

...

module 1

A
15

...
A

12

A
11

...
A

8

A7...A0

bus_enable

A7...A0

62

ReCoBus: Dedicated Read Signals
� Dedicated master read signals (interrupt)

� Idea: set connection within a module to an internal homogenously
routed interrupt wire by bitstream manipulation

� The number of internal interrupt lines scales with the number of
modules (allows many tiny slots)

� Crosspoints are directly implemented in the FPGA routing fabric
(no extra logic required)

� In practice: internal wire sharing for interrupt and bus arbitration
(also: signal interleaving and masking in the static system)

slot 0 slot 1 slot 2 slot 3 slot 4 slot 5
module 1 module 2

IRQ IRQ dummy
sink

dummy
sink

d
u
m
m
y

0
1

CPU

63

ReCoBus Properties

� Direct connection of a module to the bus

� Compatible to all established standards (AMBA, PLB, …)

� Module relocation & flexible module placement

� Variable module sizes

� Multiple instances of the same module

� Very low logic overhead

� Allows high speed / high throughput

� Hot-swap module exchange: The reconfiguration process
is completely transparent for all bus transactions.

64

I/O-Bars

OK - We have a suitable Bus.

What about dedicated links or I/O?

65

I/O-Bars for Point-to-Point Links
� Horizontal routing track within the reconfigurable area
� Connections are set by modifying switch matrices
� One bar per interface requirement (e.g., video, audio)

static system

static system

video

ReCoBus

out

audio
out

Slot 0 Slot 1 Slot 5Slot 4Slot 3Slot 2

video
in

audio
in

bypass

66

I/O-Bars for Point-to-Point Links
• Read-modify-write connection
• Ideal for data streaming

static system

static system

video

ReCoBus

out

audio
out

Slot 0 Slot 1 Slot 5Slot 4Slot 3Slot 2

video
in

audio
in

67

I/O-Bars for Point-to-Point Links
• I/O bar implementation

Incoming signals
Outgoing signals

Route through signals

68

I/O-Bars for Point-to-Point Links
� I/O-Bar implementation for 2D
� Vertical routing is accomplished in the static part
� Can be used with interleaving for decreasing latency

(requires signal alignment in each module)

69

Demo System ���������������	�

� 248 logic slots
(192 LUTs/slot)

� +16 RAM slots

� 8-bit slave bus
(up to 48 bit via
6 sequent slots)

� Video streaming

� Free placement

� Connection cost:
14 LUTs/slot

� 100 MHz
(XC2V6000-6)

70

Demo System
� Regular structured ReCoBus macro (a macro contains logic

and routing and is instantiated like any other VHDL module)

� Implementation on a
XC2V-6000

� One CLB provides up
to 8 data signals
(for read and write)

� Lower CLB packing can
improve routing (congestion around the connecting resources

72

module1
bitfile

module1
bitfile

 partial module1
bitfile

bitstream linking [bitscan]

functional simulation [Modelsim]

bus & bar
RTL model

static
system

module1module1module1

OK?n

static
netlist

module1
templates

place & route static [PAR] build partial module1

initial system
bitfile

build partial module1

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

repository for the run-time system

ReCoBus
I/O bars

bi
ts

tre
am

 a
ss

em
bl

y
de

si
gn

 e
nt

ry
, s

ta
tic

 /d
yn

am
ic

pa
rti

tio
ni

ng
, a

nd
 v

er
ifi

ca
tio

n
ph

ys
ic

al
 im

pl
em

en
ta

tio
n

static
constraints

module1
netlist

build static bitstream [bitgen] build module1 bitstream [bitgen]

place&route module1 [PAR]

module1
bitfile

module1
bitfile

 full module1
bitfile

static system
bitfile

[] novel tool third party or vendor tool[]

budgeting
[Xilinx XST]

budgeting
[Xilinx XST]

module1
constraints

floorplanning and communication
synthesis [ReCoBus-Builder]

 partial bitstream extraction
[bitscan]

Design Flow

Design Entry, Static/Dynamic
Partitioning, and Verification

functional simulation [Modelsim]

bus & bar
RTL model

static
system

module1module1module1

OK?n

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

73

module1
bitfile

module1
bitfile

 partial module1
bitfile

bitstream linking [bitscan]

functional simulation [Modelsim]

bus & bar
RTL model

static
system

module1module1module1

OK?n

static
netlist

module1
templates

place & route static [PAR] build partial module1

initial system
bitfile

build partial module1

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

repository for the run-time system

ReCoBus
I/O bars

bi
ts

tre
am

 a
ss

em
bl

y
de

si
gn

 e
nt

ry
, s

ta
tic

 /d
yn

am
ic

pa
rti

tio
ni

ng
, a

nd
 v

er
ifi

ca
tio

n
ph

ys
ic

al
 im

pl
em

en
ta

tio
n

static
constraints

module1
netlist

build static bitstream [bitgen] build module1 bitstream [bitgen]

place&route module1 [PAR]

module1
bitfile

module1
bitfile

 full module1
bitfile

static system
bitfile

[] novel tool third party or vendor tool[]

budgeting
[Xilinx XST]

budgeting
[Xilinx XST]

module1
constraints

floorplanning and communication
synthesis [ReCoBus-Builder]

 partial bitstream extraction
[bitscan]

Design Flow

Physical Implementation

OK?

static
netlist

module1
templates

place & route static [PAR] build partial module1build partial module1

ReCoBus
I/O bars

static
constraints

module1
netlist

place&route module1 [PAR]

budgeting
[Xilinx XST]

budgeting
[Xilinx XST]

module1
constraints

floorplanning and
communication synthesis

[ReCoBus-Builder]

74

module1
bitfile

module1
bitfile

 partial module1
bitfile

bitstream linking [bitscan]

functional simulation [Modelsim]

bus & bar
RTL model

static
system

module1module1module1

OK?n

static
netlist

module1
templates

place & route static [PAR] build partial module1

initial system
bitfile

build partial module1

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

repository for the run-time system

ReCoBus
I/O bars

bi
ts

tre
am

 a
ss

em
bl

y
de

si
gn

 e
nt

ry
, s

ta
tic

 /d
yn

am
ic

pa
rti

tio
ni

ng
, a

nd
 v

er
ifi

ca
tio

n
ph

ys
ic

al
 im

pl
em

en
ta

tio
n

static
constraints

module1
netlist

build static bitstream [bitgen] build module1 bitstream [bitgen]

place&route module1 [PAR]

module1
bitfile

module1
bitfile

 full module1
bitfile

static system
bitfile

[] novel tool third party or vendor tool[]

budgeting
[Xilinx XST]

budgeting
[Xilinx XST]

module1
constraints

floorplanning and communication
synthesis [ReCoBus-Builder]

 partial bitstream extraction
[bitscan]

Design Flow

Bitstream Assembly

module1
bitfile

module1
bitfile

 partial module1
bitfile

bitstream linking [bitscan]

initial system
bitfile

build static bitstream [bitgen] build module1 bitstream [bitgen]

module1
bitfile

module1
bitfile

 full module1
bitfile

static system
bitfile

 partial bitstream extraction
[bitscan]

75

module1
bitfile

module1
bitfile

 partial module1
bitfile

bitstream linking [bitscan]

static
netlist

module1
templates

place & route static [PAR] build partial module1

initial system
bitfile

build partial module1

repository for the run-time system

ReCoBus
I/O bars

static
constraints

module1
netlist

build static bitstream [bitgen] build module1 bitstream [bitgen]

place&route module1 [PAR]

module1
bitfile

module1
bitfile

 full module1
bitfile

static system
bitfile

budgeting
[Xilinx XST]

budgeting
[Xilinx XST]

module1
constraints

floorplanning and
communication synthesis

[ReCoBus-Builder]

 partial bitstream extraction
[bitscan]

bitlink module.bit X Y \
static.bit initial.bit

Design Flow
Tested Design

76

� Modules might be implemented using different
shapes/resources (design alternatives)

� Goal: higher utilization

� Interesting for com-
ponent based system
design (no place and
route)

� Simplified system
integration based on
standardized interfaces

� Enhanced IP-reuse

logic only
30 slots

2 multiplier,
6 logic slots

2 multiplier,
6 logic slots

(includes gap)

Design Flow

77

Design Flow: Blocking

78

� New advanced GUI for the complete FPGA design flow

� Project management

� Floorplanning

� Critical path analysis
(timing)

� Implementation viewer

� Integration of the vendor specific partial flow

Source: Xilinx

Design Flow: Xilinx PlanAhead

79

� 1. Step: Synthesis of all partial and static modules in
individual netlists
(Static netlist has black boxes for the modules)

� 2. Step: Creation of a new
PlanAhead project

� 3. Step: Creation of
Reconfigurable Partitions
� A reconfigurable partition

(RP)consists of several
reconfigurable modules
(RM)

� Assign a partial netlist to
each RM

� A RM can also be a black
box (empty module)

Design Flow: Xilinx PlanAhead

80

� 4. Step: Floor planning of the reconfigurable partitions
�Create Area Groups
�PlanAhead automatically creates the communication ports

for the reconfigurable partition

�Port proxy logic:
LUT1 (anchor re-

quired for physical
implementation)

�PlanAhead
automatically
creates the user

constraints file
(UCF) with the
bounding box
definitions of the RPs

Source: Xilinx

Design Flow: Xilinx PlanAhead

81

� 5. Step: Run design rule check (DRC) to verify the design

� 6. Step: Create the first reconfigurable configuration
� Consisting of the static module and for each RP a RM
� Implement this configuration
� Promote this configuration

� 7. Step: Create further
configurations

for each module in a RP:
� Import the static design
� Implement the partial

module

� 8. Step: Create the static
and partial configuration bitfiles

Design Flow: Xilinx PlanAhead

82

OR

"proxy logic"

NAND

Differences between the ReCoBus-Builder approach and PlanAhead:

� Slot-style or grid-style vs. island style reconfiguration (island style
has no external fragmentation problem �simple placement)

� ReCoBus allows module relocation
and multi module instantiation

� Proxy logic bounds a module to a
particular fixed region (RP)

� Example: 3 islands and 4 kinds of
modules requires 3x4=12 physical
implementations (place&route)

� All partial modules have to be re-implemented in case of changes
in the static system (does not scale for complex systems)

Design Flow: Xilinx PlanAhead

83

In Xilinx FPGAs, the smallest atomic piece of configuration data is a
configuration frame that contains data for all (older devices) or a set
of vertical aligned CLBs (newer devices)
� Arbitrary configuration update is possible using

readback-modify-write

� Instead of readback, a configuration image might be stored in
memory to avoid the relatively slow readback process

� Warning: Using LUTs as memory elements (e.g., SRL16 mode)
might result in side effects, when updating modules above or
below these primitives because LUT values get overwritten.

Design Flow: FPGA Issues

84

Run-time Management
� Main problem: online temporal module placement

Problem: map a DFG
onto a reconfigurable
area such that the
schedule is feasible
and the total execution
time is minimized.

In other words:
� computing module placement positions
� and schedules

� Question: predictable (offline) vs. unpredictable (oline) problem

v1

v3 v4

v2

v5

G = (V,E)

85

PR example: Sorting for Database Acceleration
� Sorting contributes to 30% of the CPU time in huge databases

PCIe
8x

FPGA

m
em

-c
on

tr.

2GB/s D
D

R
3

> >

>

prefetcher

max burst size
max latency

sorted output

A B C D

FPGA

> > >>

FPGA

context switching

A

B

C

D

MEM

initial step final step

un
so

rte
d

st
re

am

50% area saving or 4 times larger problems as compared to a static design

initial step: fully sorted sequences

[intermediate steps]: merging

final step: merge and emit result

input: unsorted data stream

� Next step: hierachical reconfiguration: swap comparator
cells for different data types (integer, text, …)

86

� Identical routing for OPs and results in each slot

� Both operands are available in each slot
(end point & middle access)

� Commutative instructions (e.g., A > B)
� Implementation alternative

� Bitstream manipulation

� Fine-grained communication architecture for flexible instruction
placement

result

OP_A OP_B

instr.
conf.

instr.
conf.instruction

register file

OP_A
OP_B

instruction
AB

register
file

PR example: Custom instructions

87

instruction slices slots bitstream latency (max/av)
64-bit XOR gate 19 (40%) 1 2.64 KB 7.04 / 5.95 ns

CCITT CRC 33 (34%) 2 5.28 KB 5.32 / 3.98 ns
sat. add/sub 70 (73%) 2 5.28 KB 9.89 / 7.81 ns
barrel shifter 90 (94%) 2 5.28 KB 11.07 / 7.88 ns
'1'-bit counter 214 (89%) 5 13.2 KB 11.37 / 8.25 ns

mask & permute 16 (33%) 1 2.64 KB 5.94 / 4.05 ns

� Direct connection (no „proxy logic“)

� Swapping of instructions:
� Dedicated load commands
� Triggered by a trap handler

PR example: Custom instructions

