Partial Reconfiguration on FPGAs

Dirk Koch (koch@ifi.uio.no)

Introduction: Terms and Definitions

Definition of the term ,Reconfigurable Computing“ (RC)

= A good definition for a reconfigurable hardware system was
introduced with the Rammig Machine (by Franz Rammig 1977):
... a system, which, with no manual or mechanical inter-
ference, permits the building, changing, processing and
destruction of real (not simulated) digital hardware

= Reconfigurable computing (RC) is defined as
the study of computation using reconfigurable devices
This includes architectures, algorithms and applications

= The term RC is often used to express that computation is
carried out using dedicated hardware structures (often utilizing
a high level of parallelism) which are mapped on reconfigurable
hardware (this is opposed to the sequential von Neumann
computer paradigm!!!).

Introduction: Example

for i = 0 to 7 do {
tmp = A[i] & x"F";
tmp = tmp + 42;

Q[i]= tmp * 24;

}

slow and
power hungry

von Neumann computer

IDI reg i, 0
L1:ANDI r_tmp, $i, xF

BLI reg_ i,Ll

linstruction

stream
= data
> stream
> —>
_>

reconfigurable computing

A[0][3..0] —>>
>
bo——/ >

24—

A[1][3..0] =
>
42—>>_>

24—

Q[O]

Q[1]

VY

<¢--- Buljjoiun dooj

A[7][3..0] .

42 Q[7]
24

pipelining ===+

A[0]—>

N

42 —> Qo]+,

24 —>

RC benefits
among von Neu-
mann machines:

» fast parallel
processing
- pipelining
- loop transform.
* no instr. fetch

(no extra
memory access)

* NO instr. decode

* possibility of
dedicated instr.
(e.g., MAC)

* lower power

Introduction: Example (Benefits)

Reconfigurable computing permits to tradeoff between performance
(speed and/or latency) and area (number of used primitives) of the
reconfigurable architecture. This requires to solve the following steps:

= Allocation: defining the resources / functional blocks
which are allowed for implementation

= Binding: defining which operation is executed on a particular
allocated resource

» Scheduling: defining the time when an operation is executed

Allocation, binding, and scheduling are fundamental problems that
have to be solved at different level of abstraction (e.g., system level,
architecture level, or all refinements.

This holds for both the hardware and the software part!

Further: RC removes architectural limitations (e.g., like shared
memory communication in GPUSs)

Introduction: Terms and Definitions

These RC benefits exist also for dedicated hardware (ASIC',
ASIP?), but reconfigurable computing allows more:

= Adaptability: react on environment changes or different
workload scenarios by adapting the behavior and structure
of a system (e.g., scaling a system with configuring more
instances of an accelerator module to a recentf. device)

= Customization (post fabrication): allows for different features
for individual systems

» Updatability: update to new standards, bug fixes,
after sales business with new features ,hardware apps”

Possible by (re)configuration: Configuration (and respectively
reconfiguration) is the process of changing the structure of a
reconfigurable device at start-up-time (respectively run-time).
Mostly this means: sending new configurations to the device

ASIC': application specific integrated circuit; ASIP?: application specific processor

Introduction: Terms and Definitions

Reconfigurable architectures

» Coarse grained:
ALU-like primitives with word
sized routing channels

= Examples: NEC-DRC, PACT XPP, o
Silicon Hive, Ambric, Picochip, TILERA, NV|d|a GPGPU

» Advantage: extreme performance for domain specific tasks
» Fine grained: bit level primitives (e.g., look-up tables (LUTs))
and single wire routing
» Examples: plenty of academic architectures, Atmel FPGAs
= Advantage: can virtually implement anything
= But often poor performance and/or chip utilization

= Hybrid: fine-grained fabric with additional coarse-grained
primitives (e.g., hardware multipliers or CPUs)

= Examples: Xilinx Virtex families (some with embedded PPC)
= Aims at combining the advantages of both 6

Introduction: the FPGA-ASIC Gap

Hybrid FPGAs are dominating reconfigurable market, but there is a
= Gap between reconfigurable FPGAs and dedicated ASICs

@ 90nm process® FPGA versus ASIC
chip area ~ 18 x larger
dynamic power ~ 14 x more
clock speed ~ 3-5 x slower

*Kuon & Rose: Measuring the Gap Between FPGAs and ASICs, in Tr. On CAD, 2007.

= Note that the gap towards a programmable von Neumann
machine could be even orders of magnitude higher!

= also: lack of productive design tools (and skilled engineers)

Solution: partial run-time reconfiguration (PR):

reusing the resources of a reconfigurable architecture by
multiple modules over time. Only parts of a system might be
updated while continuing operation of the remaining system.

FPGA-based Systems everywhere, but not PR

= FPGA-based systems are omnipresent in our daily life.

Each A380 contains more than
700 Actel FPGAs, e.g., for:

= Engine control & monitoring

flight computers
= praking systems

safety warning systems

What we should know about FPGAS

= Slow (~300 MHz), but highly parallel execution >1000 Operations
= Moderate |/O throughput, but >1MB @ >1TB/sec (on-chip)
= Difficult VHDL programming, but C++ is coming up

data flow oriented vs. control flow dominated
for i=1 to « loop 1 old_position) ths
numbercrunching; cas&ypositio S

42: 1<«ree then

PR Advantages: Area Saving

Agplication Ere-airiewn — 7 days

= Networking: ol EE=a=
Adapt to changing L AEEREREE
protocols over T
time

= Encapsulated
design of the
processing
modules

hitnn

configuration
repository

FPGA network processor

[] dispatcher | |config.

HTT

source:www.caida.org

10

PR Advantages: Area Saving

Net preset value [US$]

Economics of ASIC- and FPGA designs

1 — Standard cell ASIC] |

— FPGA |
H — — FPGA with 33% saving by | |

using reconfiguration
=
04"
0 2000 4000 6000 8000 10,000 12,000
Volume [units]
FPGA buyers: - reduce unit cost

- after sail business
FPGA vendors: more attractive for high volume designs

Source: Electronic News 16.03.2006

11

PR Advantages: Acceleration

= Reduce latency by spending more area on submodules

> 1

=
A B|C N
time &
S,L_A [« S
s BB atency—S [AlBIc|alBlclA
82 C 82

> 1

= May alternatively allow to reduce clock frequency (and power)
= Lower latency might reduce buffer sizes
= Example: TLS/SSL, sorting (database acceleration)

= May also increase throughput

12

PR Advantages: Faster Configuration

= Full FPGA bistream can currently be > 20 MB

= Flash memory performance 10-20 MB/s
(special high-speed Flash memories reach up to 100 MB/s)

= - Fullinitial configuration ~ 1-2 seconds in practice
an order of magnitude to slow for PCle (setup within 100 ms)

= Solution: Bootstrapping using PR

Initial config. from boot flash System config. via PCle
conf. port conf. port
A
‘empty’ J
PCle core boot PCle core — boot
flash T flash

EREITTTTN AT ITN

PR Advantages: IP Reuse

+58% / year / T

logic transistors/year//
7 design gap

e }/{
pdd —
/ //

+21% / year

P -
é productivity in tr. per man-month

10 000 000
1 000 000
100 000
10 000
1000

100

10
1

1980 1985 1990 1995 2000 2005 2010
[International Technology Roadmap for Semiconductors]

High level of IP reuse - Adapt the component-based system

PR design flow for a general design methodology

ldea: take as much as possible from an existing environment and

add only the application stecific parts.

14

#LUTs

600 K +
500K +
400K +
300K +
200K +

100K+

PR Advantages: SEU* Compensation

LUT-4 era LUT-6 era
A 1'2 M
O
= x i
x 2 :
TS > |~
_ 31 x| %
1]
= Al =
o . g L: @
S 2 &
= = B E >
X x _.::>
258 B
T 515
2000 2002 2004 2006 2008 2010
130 nm 90 nm 56 nm 40 nm 28 nm

bitstream“size
30MB T+

25MB
20MB
15MB
10MB
5MB

Smaller configuration SRAM cells

Exponetial rise in the total amount
—> Increased risc of *single event upsets (SEU)
Solution: Configuration Scrubbing
= Continous reconfiguration during operation (repair)
» Readback for SEU detection (before committing a result)

LUT-4 era LUT-6 era s 299
= @ T
A5 >
c| E X
5o E| |3
» _'L:' QJ
=) =
X 10 >
o — 1 L 3
o =< g E’.
= X x 0 =
= = = O >
x X5 gE I
2w®E n>]
— :S L 4
>0
t 1 II. t H } t t t t t } >
2000 2002 2004 2006 2008 2010
130 nm 90 nm 56 nm 40 nm 28 nm

15

RC on FPGAs (Classification)

= (lassification of (run-time) reconfigurable FPGA-based systems
FPGA-based systems

/\

one-time configurable reconfigurable
Actel SXA family (antifuse) /\
ASIC substitution® .
global partial
older Altera FPGAs /\
in field update™ .
passive’ active®

* Typical use case Xilinx Spartan 3 Xilinx Virtex families
mode changing*

= This lecture focuses on passive' partial reconfiguration (interrupt
whole FPGA during reconfiguration) and active partial recon-
figuration® (untouched parts continue execution) on FPGAs.

16

Context-Switching on FPGAs

= Partial reconfiguration is also referred as context switching.
= What is the Context of an FPGA?
= “Context” denotes a “state” which is stored in memory

Located in: 1) FPGA fabric (technology level)
2) Modules (logic level)

1) Present FPGA configuration

Source: Christophe Bobda

Access via configuration port

2) State of a module
 Register snapshot
 RAM blocks

« External state

S

i s
_rD_A_’/

Access via configuration port or

extra logic (e.g., scan-chain)
17

Context-Switching on FPGAs

Classification Technology level (FPGA)
static dynamic

static

dynamic

Logic level (module)

= All variants may co-exist in a reconfigurable SoC

*Website: http://www.matnat .uio.no/forskning/prosjekter/crc 18

Baseline Model of Partial Reconfiguration

The time-multiplex model: configration data (bitstream)
4] internal configuration logic
FPGA 1))/_, S _,\{
L
f(’ phone
471 |video <=2 —> —> video —> >
MP3
/ -,
MP3 —>
// N -
reconfigurable region surrounding system

Activate one module exclusively within a reconfigurable region

Swapping between modules by writing a partial bitstream to a
configuration port (defines the configuration time!)

Bitstream might be written by the FPGA itself > selfreconfiguration

Used by the tools from Xilinx and Altera
19

PR Time-Granularity (sub-cycle)

Tabula’s 3D Architecture

= 8 configuration planes
» Reconfiguration @ 1.6 GHz

= Within netlist reconfiguration
(uses forwarding registers
called ,time via®)

ML 8folds @ 1.6 Ghz

| [200 MHz user clock
| | | | | 400 MHz user clock

PR Time-Granularity (sub-cycle)

traditional FPGA implementation

b,, a, b, a, b, a, S A A A AR
Example: L Ll LU «H VA k— VA H VA k- VA
32- bit VA «— VA VA <i\‘l |} |} !
rdder LT U S
! S1. o b; a; by ag bs als_ﬁ
= one memory access pertimeplane | [" [| [l L1l |
(virtually 8 memory ports; holds va kdvava kb ya kL] time
only when not space folding) T T I T Vla
= Difficult to rate this approach: 7 S S5 54
extra multiplexer for plane ”
switching have to be D 837 Dgg 850059 8pg byg Ang
mapped on a 2D chip USRS A A A At A A time
> longer routing paths VA VAR VAR VAR via 7
= Difficult tools (manual ma- i i i i -
31 30 29 28

nipulation or simulation)
" http://www.tabula.com

b, a, b, a,b, a, b, a,

PR Time-Granularity (single-cycle)

Multi-context FPGAs

= originally proposed by
Scalera & Trimberger

= single cycle confi-
guration swapping

= idea: duplicating all
configuration bits ¢
for each “plane”
and multiplexing between planes

* Problem: extra multiplexer required for each configuration bit

= All planes have to be mapped on a 2D chip (3D = 2D mapping)
—> longer routing between the primitives <=> lower performance

» Bad idea for FPGAs: most of the FPGA die area is spent on confi-
guration SRAM cells) usefull only for coarse-grained architectures

= Better: multiplexing between different areas on the FPGA

949

22

PR Time-Granularity (multi-cycle)

Configuration by writing a new configuration bitstream to the device

normal case for all FPGAs from Xilinx and Altera (starting with
the Stratix-5 family)

rapid partial module swapping
(e.g., swapping within a frame in a video processing system)

mode changing / field update

(typically used in combination with full FPGA reconfiguration,
e.g., in measurement equipment when changing settings

or for prototyping (ASIC emulation))

23

PR in Time and Space

So far, we have only considered to have one module exclusively
placed with a reconfigurable region (temporal partial reconfigurati-
on) = extension to multi-module placement of partially reconfigu-
rable modules (spatial partial reconfiguration)

Possibilities for tiling the reconfigurable area into resource slots:

Island style slot style grid style
IT|13
\\
m m m m, [|g —m,——m
1 2 \ 1 |2 |1‘ , |2
\ | ||
\ N | Vo
static part of the system unused reconfigurable area different modules

As smaller the slots, as lower the internal fragmentation (the waste
of logic resulting from fitting any sized module into a tile-grid (i.e.,
clustering the FPGA area into regular groups of resources))

PR in Time and Space: Efficiency

PR paradox: Runtime reconfiguration is brilliant, but not used!

internal fragmentation p
m1 m2 Em ' ' Cconst
|_\\ I_ I_ I_ I_ // Cconst \ . >]
communication cost ¢ M\ AT overhead

» [nternal fragmentation is dommatmg the overhead

= (Can be optimized with small slots = 2D placement
(but might result in additional cost for the communication)

= 2D enhances BRAM/DSP utilization

= 2D is obligatory for newer FPGA Architectures (Virtex-5/6)
Requires adequate on-FPGA communication architectures

= Buses

Point-to-point connections .

Optimal Resource Slot Size

Internal fragmentation results from fitting modules into a grid of
fixed resource slots.
= Analog: storing files in a filesystem with fixed clusters

= Average overhead of a module set of modules:

| M| . [: resources in a slot
— 1 m; oo
O=——- E -l — m; ¢ : communication

[—e m. . resources of module i

1

[—c n;

LR

Optimal slot size depends on the modules and communication cost
26

Optimal Resource Slot Size

» |[mpact of the resource slot size and the communication cost on
the average module overhead

Scenario: 9701 modules with 300, 301, ..., 10000 LUTs
with a communication cost of 0, 5, ..., 25 LUTs per slot

average logic overhead

3000

2500 "\

2000 ’ﬁ\ -0 =~5 ~10 —~15 =20 =25

1500

1000

500 - =

0 T R S T B B B o B B B B e e o
N qpo ‘;00 600 ngg \Q@Q < qpo R »‘QQ \ngo \ngo q/éoo q,‘?(/"Q %@Q
resource slot size in terms of LUTs
Result: optimal slot size ~200-300 LUTs or ~25-40 CLBs

27

Optimal Resource Slot Size

. 1 M . [: resources in a slot
O=——- Z ({ I —‘ -] — By) ¢ . communication
M| = l—c m, . resources of module i

Discussion:

= |f m, >> [the overhead converges to //(I-c), meaning that for
large modules (with many resource slots) the internal
fragmentation becomes neglible.

= The optimal slot size can be computed by differtentiating the
avarage module overhead o with respect to the slot size I.

» As the ceiling function is discontinuous, its bounds are
considered: N - N
|m;| < |'|m,|-_‘ < |”E|(1

I—c — | 1— l
= |Lower bound: perfect fit

_ M| .
= Upper bound: one slotis O — _.1 'y ((mil 1) gl ‘””0
almost unused M| 5 [—c

28

Optimal Resource Slot Size

Discussion:
= Upper bound: one slotis . | M mil
O:TfT' ((1 +J)-l—hm0
i=1

almost unused

Worst case:

Avarage
case:
(achievable
only with 2D
grid style
placement)

optimal resource slot size

20() R 1 M|
=0= ;,, =cCc* . C- m;|.
a l lf}f}f‘ \ ‘*\/H ; ‘ f‘
400 -~ _..r”'*HJ
300 - /
ﬂ.ﬁf
200
/‘/f{ré
100
¥
/
D}g"f S —— ——
0 5 10 15 20 25 30

communication cost per resource slot in LUTs 29

avarage overhasd in LUTs

Optimal Resource Slot Size

One of the best published solutions:

» Hagemeyer et al., Design of iR e Eiiai
Homogeneous Communication L R i
InfraStrUCtureS for Partia//y ;_%u\-:f Mri\'n'l-:_lﬁ". S Hﬁﬁﬂﬁﬁ:‘\f L:qf.;'l-ﬁ‘ﬁﬁlgﬁ‘ﬁ‘ 1 "’\"%‘ Tzl ﬁ%
Reconfigurable FPGAs e e R B Ez: ilshss
ERSA, USA 2007. % kG 8 s
= Master and slave support (32 bit) b bl i
= 16 sockets (XC2V4000) e g e
= Communication cost: 8554 LUTs E A A A A A s
(~three 32-bit CPU-cores) i FaithiT AT R i
= No I/O support i i e
= Resource slot size: 2560 LUTs i
o]
B \ Communication cost perresource siotin LUTs <(o O O B i (_D I i0 T X nfon o E “ O &l %

\ R e U e s R [ELELOEOL DL DD 00 D DL DE G
1a00 1 e e ach | et ot e e R S A e o et SR o)

500

Catastrophic communication cost
and too large resource slots 30

LTS per resolrce slotinincrements of SULUTS

PR Space-Granularity (bitstream)

The behavior or structure of a system
can be changed by small manipulations
of the configuration bitstream.

* Manipulation of the routing
(switch matrix multiplexer)

» Changing logic functions
example: AND - OR

\
A 0
A 1
. 4 O
LUT values
F]
A, o———— /
Ao)
A,© Slice FF
A,
FFo

Ao Au A Ay | AND gate | OR gate.
0 0000 0 0
1 0001 0 1
2 0010 0 1
3 0011 0 1
4 0100 0 1
5 0101 0 1
6 0110 0 1
7 0111 0 1
8 1000 0 1
9 1001 0 1
A 1010 0 1
B 1011 0 1
C 1100 0 1
D 1101 0 1
E 1110 0 1
F 1111 1 1

31

PR Space-Granularity (small modules)

Sometimes, even small modules can materially speed-up a system.

= Example: reconfigurable customized instruction set extensions
(e.g., with instructions for CRC, DES round, bit swapping)

[resuH: L~ reSU|t

CHEEAIE op 2 BT op g

OP A<= —OP_B —

: . : : conf.| | conf.
instruction S~ mstructlonw cont.| | cont.

= Relatively small configurable instructions can speed up
execution by at least an order of magnitude.
(NIOS, GARP, DISC)

= Typically non concurrent operation (blocking the ALU)

= Difficulty: instructions have a high pin count per logic
—>Interfaces have to be ultra efficient!

= Different logic requirements —2>flexible instruction placement

PR Space-Granularity (large modules)

Typically, systems consist of multiple concurrently working modules.

internal fragmentation

r

/

™

m, m, |g

RRNNEREN)

cconst \

N
m5 '
J

c

const

.

)

/
communication cost ¢

M
A
[0
m, m, g '
J\.
g
M

Y
M\ M

>
overhead

= Difficulty: modules have different resource requirements

= Logic
= Memory
= Multipliers

= Placement restrictions
(string matching problem)

logic memory
\

reconfigurable
LL|FPGA region

\\
LL|L{LmiLL|Lf{LLiLyi|L (ve
place.rtnﬁt\f\j
options LL[module

—>Interfaces should allow two-dimensional module placement
= Further: placement impacts the communication!

33

PR Space-Granularity (module coupling)

tightly coupled < > loosely coupled
register file cache system memory
complexity (size)
t1
&)%)
7]e)
oz
. , ; reg file memory
_Reconﬂgurable HW N~ .
in parallel to the ALU T o O '
g jZ:' _(C% bus |
(1] Wirthlin and Hutchings: r—[Il

DISC: Dynamic Instruction
Set Computer (FCCM 1995)

34

PR Space-Granularity (module coupling)

tightly coupled < > loosely coupled
register file cache system memory

complexity (size)

reg i memory
:\ A
D \ 4
) — bus |
[<<

35

[1] DISC =
NIOS —
NIOS Il =

IR
(D
(@)
(D

Reconfigurable HW
in parallel to the ALU

= Module may contain
own register file

cache

7 7

PR Space-Granularity (module coupling)

tightly coupled < > loosely coupled

register file cache system memory
complexity (size)

ttt1 t

382 8 :

0z0m <

= <= ~

Coprocessor-like QEaly)

IR
(D
(@)
I
)

coupling of the S 2 "
reconfigurable HW]_?z(' TH § bus |
[2] Hauser and Wawrzynek (Fcemo7): L — r

GARP: A MIPS Processor with
a Reconfigurable Coprocessor

g

37

PR Space-Granularity (module coupling)

tightly coupled < > loosely coupled
register file cache system memory
complexity (size)
tttt t t
= O <
58 0 o i >
0ZOm 5 O
= Coprocessor-like p=regiie memory
coupling of the -3 Il i
reconfigurable HW = S bus |
= Decoupled by Fifo r]_'/ Ui
channels (FSL-Fifo)) :‘zﬂ
= Parallel execution ——

38

PR Space-Granularity (module coupling)

tightly coupled < > loosely coupled
register file cache system memory
complexity (size)
tttt t t
= O <
58 0 o i >
O=ZOm 5 O
= Z£= — o
— o,
= Connect reconfigurable £ '“ie ﬁ memory
HW to the memory bus -]—> S
= Common FPGA-based _}jz(' —(

approaches require an
interface (in the easiest

case a “bus-macro”)

40

On-FPGA Communication

Goal: an efficient on-FPGA communication architecture that
supports the grid-style module placement.

» Classification of different on-chip communication architectures:
On-Chip Communication

v ———

Point-to-point Interconnect Network-on-Chip

. Hierarchical .
Custom Uniform shared Bus Split bus Homogeneous Heterogene

source: Terrence S. T. Mak, N. Pete Sedcole, Peter Y. K. Cheung, and Wayne
Luk. On-FPGA Communication Architectures and Design Factors.
In Proceedings of the 16th International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 1-8. IEEE, 2006. C u StO m Seg men ted B us

» for FPGAs: - buses (reading / writing of registerfiles and DMA)
- point-to-point links
(I/O-pin connection and data streaming)

41

On-FPGA Communication (History)

= Progress in Partial reconfiguration (physical implementation)
using the Xilinx tools over the last decade:

= Fundamental problem: binding of the partial module entity sig-
nals to fixed routing resources of the FPGA fabric ,module plug”

PR region static system

..

e
"t

NAND!

.....................................

= Xilinx Bus Macros® for constraining the routing between the
static system and one or more PR regions (introduced 2002)
N Costs two TBUFs per signal wire (in terms of latency and area)
A Placement restrictions & device support

42

On-FPGA Communication (History)

= Progress in Partial reconfiguration using the Xilinx tools
over the last decade:

"slice-based bus macro"

OR

L1

€]

NAND

= | Slice-based Bus Macros* (proposed by Hlbner et al. in 2004)
7 More flexible (higher density of wires, more placement options)

7 Works with all Xilinx FPGAs (Virtex-1l Pro: last FPGA with TBUFs)
N Costs two LUTs per signal wire (in terms of latency and area)

43

On-FPGA Communication (History)

= Progress in Partial reconfiguration using the Xilinx tools
over the last decade:

"proxy logic" /"proxy logic"

—~
e

D

§

OR

= Proxy logic” (released for some devices by Xilinx in 2009)
7 Automatic placement of anchor primitives
N Costs one LUT per signal wire (in terms of latency and area)

N Only provided for some devices

= Same approach is used in the upcoming Altera PR flow »

On-FPGA Communication

n ' "
PR link _lox
"““““""“"-“: ------------------ FPG& Edit Commands Macro Menu Help
)
! Macro Manager |
: i
| | Selected b
! <= elected Macro
! IHEEDEUS
Add Macra
[]] 1
i OR ; a Add
-‘-__
- |
NAND > <
<

,PR links*
Binding entity signals to the !
wires crossing the border to B —
a reconfigurable module.
7 No logic overhead, cleaner design flow, supports S6 (V5, V6) 45

On-FPGA Communication: Buses

Bus macros are best suited to integrate modules into islands!

The following slides present structured communication architec-
tures for slot-based (1D) or grid-style (2D) module placement

4©Bus

The Simple Formula for Building Bus-based
Reconfigurable Systems

P 'r-i'r'.""“*rrirHHh"-'ﬂ "
{ .

7

-
-
-

-
=
=

———
aE
.
-

F e F
i i r r
i & &
b/ e i

zxu'l.mx.

u-a:?“ Top4y

13},
Mgy

.f

AR

L% %k
e o

AR

46

ReCoBus Communication

All bus protocols can by implemented by the use of
four signal classes:

shared write

shared read

dedicated write

dedicated read

Master

shared master
write signals

shared master
read signals

Example: connecting an interrupt signal from a slave to an
interrupt controller is basically the same problem as connec-

R\W

Slave 1

address

| readdata [| |

Slave 2

interrupt_1

-Il-ll-

interrupt 2

——— dedicated master
read signals

select_1

address
decode

select 2

[————dedicated master
write signals

ting a bus request from a master module to an arbiter

47

ReCoBus: Shared Read

Shared read signals for connecting one selected module with the
static system:

module 0 module M-1
a) b) slot O slot 1 o slot R-1
data out data out data_out data out fitsinto data out
N " 1 sel, sel, I~J one LUT ¢ |R_1J
w | sel;—] |_I seli] |_I - l ------ : L '/ \ """"" . |d
[o & : i&]) 2 Y
© & & e + L7 [) S I ER
= ! ! = >1 || >1 + [>1 m
2 S [S N S el W o y
I reO O O— '-O_" —1'O'|O'

Homogeneous (=identical) logic and routing footprint inside each
resource slot

Free module placement
N Deep combinatory path (slow)
N Massive resource overhead (has to replicated for each bit signal)
N Only suitable for a coarse-grained placement grid

—>internal fragmentation 48

ReCoBus: Interleaving

>

Problem: the structure of a distrlbuted read multinlexer chain is
unlikely for very fine-grained res

« reconfigur.

Slot 1 Slot

Logic overhead: 4/24 = 17%

49

ReCoBus: Interleaving

= Problem: the structure of a distributed read multiplexer chain is
unlikely for very fine-grained resource slot layouts:

reconfigurable area g
i Slot §2 S8lot@4 SS8Iot36 SPlotF8 S8loBH0 S HlotFi12

LN AL AL

D, NI N TN TN TN TR TR

D, A N RIN IR IR TN TN IR /\.gi_g,j/'o'
Dzs..@’é’/ NNV VR VA VR AN R D /\<¢_‘>,I/'O'
5 *,é,/\ A UN VA VUN VR DA JRAUR TR /\.=4_‘>,§/”

» Logic overhead: 4/6 = 66%,; very high latency!

52

ReCoBus: Interleaving

= Solution: multiple interleaved read multiplexer chains

reconfigurable area >
S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12:

R

: S1
D 5
7.0 E I | R R >
5 97—
23.16 ;

» Low logic overhead, low latency and fine granularity!

lOl

53

ReCoBus: Signal Alignment (1D)

= Example system:

t Module 0 i L Module1 = !
b S 1 S2 S3! S4 | S5 S6 S7 S8 !
g ' ! ¥
CPU E em gout erl] pout : iem gout er|1 pout elﬂ |dout er|1 gou:i
& [: (& (& (& [&]
& 7 l I | al

P[> >1 1 O B B =1 &

\ERAERED : ¥ 1L f
sSasas = = I e}
static system ig runtime reconfigurable system >

= Alignment-multiplexer allow free module placement

= [nterface grows together with the module complexity (size)
For example: a small UART might be connected using an 8-bit
data bus and a more complex Ethernet adapter with 32-bit

= The first LUT function of each chain (here rightmost) must be
changed to an AND gate or an external source is needed s

ReCoBus: Signal Alignment (1D)

= Assuming an 8-bit interface pro slot, it takes at least four
consecutive slots to provide the full interface size

0 start point & mux select value 0123 0123 5153 S
0 used connection ¥|_/ ¥|—/ ¥|—/ _l_/

0 | unused connection D31...D24 D23..D16 D15..D8 D7..DO0

ReCoBus: Signal Alignment (2D)

= The signal interleaving scheme can be extended to implement
buses allowing to integrate modules in a 2D grid style.

slot indexing: slot, v) off 0 > 0 W]
|

'. _— ; n=

1 3] o B2
: I I -m3 ‘I === —
o S o

2
J [1 [1
; () [=]
T s Se= =S :
1 21 21 21 3 3} 6 77

0 start point & mux select value 0123 0123 3153 5753
0 used connection ¥|_/ ¥|—/ \—l—/ ¥|_/

0 unused connection ...D24 D23..D16 D15..D8 D7...D0O

slot3,6

ReCoBus: Dedicated Write Signals

= | UTs can be used to decode an address within the bus
(the table contains then a one-hot value, e.g. for addr. 0xA)

LUT values

N
0

1

o ——\ T

Slice FF

)—/A—o

LUT in
SRL16 mode

0
1
2

__—\

>> > >

0 0 0 O

j_A_o

3
FFo

o S

out

= For setting an address, LUT values can be exchanged:

= Using the configuration port,

= Accessing the table with the user logic:
SRL16 shift register primitive or distributed memory

value

(@]

MM|O(O[W|PP|lO©O|O|IN|OOD|O|M|[WO|IN|—=]|O

O]l ool Ol OOl ROl O|OCO| OO |lOCO|lO| O O

(&)
~

ReCoBus: Dedicated Write Signals

= Architecture: uniformed distributed address comparator inside
the bus (implemented by SRL16 shift register primitives)

| Y| fits into one
0000000000100000 1111111111111111 1 Jook-up table
' EN
config_data | D. S |
I U I
config_clock4——— I module_reset
bus_enable 7) A\ / |
| i ' +——module_select
I |
bus read : & -:—» module read
bus side | reconfigurable select generator | module side

= Two-stage reconfiguration:
1. EPGA: initialize the shift register with OXFFFF

2. Logic: configure address comparator and activate module
58

ReCoBus: Dedicated Write Signals

Arrangement of the address comparators

.
:' module 1 : ! module 2 :
1 slotO slot 1 : slot 2 : slot 3 slot 4 slot 5 :
|
])
cpu |! 3 | i |8)
: AEE : HEE |
| <] I B :] ol 3| @ :
|]
: module : module :
------- slele_ct e t------- slele_ct ———me—=d
TT11 bus_enableL[99'C | coniig_daa . 99IC | bus_read
1y / cor/1j|g_clock |
bus 11/]
logic i

L

|<33ca |

Allows module relocation

Multiple instances of a module
(individual module addresses)

Automatic reset generation

No interference by the reconfiguration process (Hot-Plug)
Extra register file look-up for alignment multiplexer control

g 2 3 3

o2 o 3 e ®
c Q [[[

oS o o o Q

S o > > > 3

€3 8 8 8 T

@S S € S o

= o £

Y (o] «

ST L2

N~ (1]

- - p .

SI0 oy

L c

Q

| (o]

| -

— (8]

] Q

1 < Q

] ()]

] Q

- 0

- (1]

— 5

] o)

00— =

| L c

Z o

T = N 3]

[m)] ()]

p

g $ 2 B o

T 819 o O

-o| o|C L|.u_’

2 2 S o

s tg 23

© 8 o Q

60

ReCoBus: Dedicated Write Signals

= Assuming an 8-bit interface pro slot, it takes at least four
consecutive slots to provide the full interface size

[

| {b{l{J/s_enalcc‘)Ie

——

-

O=
O """
O=

[y
=%
UJL Q00 0001—-

module 1

master select A_A, [EREE—=19(8]7]6/5[4[3]2]1]0
module | M F """v'""freservved l
Icl-v b | select E Tmodule_select,
<|] A...A logic D [
A R < :
1 (<] BRI A - FF
< | K s 9 : FE}
” == 8 /~ T module
& i : L register
5
4
3
2
1
0

oORNMWhUINOOIPWAQAU T

VIIIVIIIVIIIV
[y

[y

I module_select,

= Address mapping: the whole ReCoBus subsystem appears like one
module in the address space of the system

= Upto 15 modules can be addressed (one encoding (0OxF--) is used
for the case that no module is selected)

= Wildcard addressing for multi cast operation (wired OR onread)

ReCoBus: Dedicated Read Signals

» Dedicated master read signals (interrupt)

! module ! : module 2 :
: slot0 slot1 § slot2 : slot3 slot4 slot5 :
| P
I |IRQ [dummy i i““““ M IRQ [dummy |
CPU < | ;] s < |

<33co

= |dea: set connection within a module to an internal homogenousl
routed interrupt wire by bitstream manipulation

= The number of internal interrupt lines scales with the number of
modules (allows many tiny slots)

= (Crosspoints are directly implemented in the FPGA routing fabric
(no extra logic required)

= |n practice: internal wire sharing for interrupt and bus arbitration
(also: signal interleaving and masking in the static system) e

ReCoBus Properties

= Direct connection of a module to the bus

= Compatible to all established standards (AMBA, PLB, ...)
= Module relocation & flexible module placement

= Variable module sizes

= Multiple instances of the same module

= Very low logic overhead

= Allows high speed / high throughput

= Hot-swap module exchange: The reconfiguration process
Is completely transparent for all bus transactions.

63

|/O-Bars

OK - We have a suitable Bus.

What about dedicated links or 1/0?

64

|/O-Bars for Point-to-Point Links

= Horizontal routing track within the reconfigurable area
= Connections are set by modifying switch matrices
= One bar per interface requirement (e.g., video, audio)

bypass
staticsystem .+_/_
SIotO Slot1 Slot2 Slot3 Slot /
video. . video

audio i i i . audio v

out i i i a a . in

statlc system

65

|/O-Bars for Point-to-Point Links

 Read-modify-write connection
« |deal for data streaming

statlc system

SIotO Slot1 Slot2 Slot3 Slot
video. | | | '
out |

audio |
out

statlc system

66

|/O-Bars for Point-to-Point Links

/0O bar implementation

Incoming signals
Outgoing signals

I

Route through signals

67

|/O-Bars for Point-to-Point Links

= |/O-Bar implementation for 2D
= Vertical routing is accomplished in the static part

= (Can be used with interleaving for decreasing latency
(requires signal alignment in each module)

%
{g Tt =) A H_—b_,/ module
| Er e = s '“Qicﬁ
~ 7am\'.
‘ﬁ bl — — — — — = NS —
Bl o e o ik
. [La T e =
% .
! | video
& [la
I Eﬁ Tt —) —r 'T-I—:p |7
back-_|I——% B B -—l
ground

68

Demo System wwRe(OBus.ce

= 248 logic slots il i HE R
= +16 RAMslots ‘ g

= 8-bit slave bus
(up to 48 bit via
6 sequent slots)

ERFRERE RN e R AR RO EE R R
[EEEL

; EEEEEEEEEN EEEES EEELELIEEE

= Video streaming

= Free placement e

b 4 b 4
XXl

= Connection cost: [
14 LUTs/slot

= 100 MHz
(XC2V6000-6)

JEEENECEERE N KRR EEEEEE

D ¢ P (<

:.;I;:—ﬂﬂ'-ﬁ:ﬁ
vaabvaiiatea

69

Demo System

= Regular structured ReCoBus macro (a macro contains logic
and routing and is instantiated like any other VHDL module)

= |mplementation on a
XC2V-6000

= One CLB provides up
to 8 data signals
(for read and write)

= Lower CLB packing can

Improve routing (congestion around the connecting resources
70

Design Flow

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

QL c
L) g2
¥ €8
bus & bar static E S
RTL model system module, =2
KBS
l l v o
functional simulation [Modelsim] =
¢ c 8
o=
=
(7]
N ok? g3
l
e 5
budgeting —>{ floorplanning and communication j«— budgeting =
[Xilinx XST] <«— synthesis [ReCoBus-Builder] }— [Xilinx XST] %
v v v 5
o
static static ReCoBus)~ moduled module, g
netlist | |constraints || 1/O bars) |constraints netlist 5
©
V1 / 2
place &route static [PAR] | | place&route module, [PAR] &
| T
v
build static bitstream [bitgen] | |build module, bitstream [bitgen]
>
T o
static system full module, ' £
bitfile bitfile &
(4]
tial bitst tracti E
- o - partial bitstream extraction 3
bitst link bit . Q
| itstream linking [bitscan] Ibitscan] Z
=

initial system partial module, l
bitfile bitfile
repository for the run-time system
m novel tool [] third party or vendor tool

Design Entry, Static/Dynamic
Partitioning, and Verification

ReCoBus & connection bar protocol specification

[ReCoBus-Builder]

bus & bar static
RTL model system

)

module,

functional simulation [Modelsim]

v

OK?

72

Design Flow

Physical Implementation

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

bus & bar statlc
RTL mode system
functlonal snmulanon [Modelsim]

v

OK?

design entry, static /dynamic
partitioning, and verification

n

/Toor;nningand\‘

bQQQeting —] floorplann'ing and commun'ication — b'u'dgeting -% bUdgetmg communication Synthesis bUdgetmg
[X|I|nxXSJ] <« siynthems [RefoBus-Bwlder] L [Xilinx XST] E [X|||nX XST] [RGCOBUS'BUiIder] [XlllnX XST]
[statlic][statig](ReCoBusJ E‘ ¢
netlist | (constraints || 1/O bars =) .
T I 7 2 [static J [static J(ReCoBusJ
| placed oute static [PAR] | [placeroute module, [PAR] s netlist | |constraints || 1/O bars
| build static bitstvream [bitgen] |]m l l / \
g place &route static [PAR] | | place&route module, [PAR] JJ
v v
[bitstream finking _[bitscan] partial b't[ztg?;f xtraction %

bitfile
i
repository for the run-time system

m novel tool [] third party or vendor tool

73

Design Flow

Bitstream Assembly

ReCoBus & connection bar protocol specification
[ReCoBus-Builder]

bus & bar statlc
RTL mode system
functlonal snmulat|on [Modelsim]

v

OK?

v

build static bitstream [bitgen] | |build module, bitstream [bitgen] _IJ

design entry, static /dynamic
partitioning, and verification

n

static system

- e
budgeting —»{floorplanning and communication j¢«— budgeting -% bltflle
[Xilinx XST] <«— synthesis [ReCoBus-Builder] }— [Xilinx XST] ‘qc:
v v v § m— .
static |(static |(ReCoBus g . S— . partial bitstream extraction
i t]EonstraimJ(VO b J = bitstream linking [bitscan :
[B : g_[bitscan] hoa
v VY g
 place &route static [PAR] | [place&route module, [PAR] a
| T
v
| build static bitstream [bitgen] | build module, bitstream [bitgen]
>
o]
static system g
bitfile 2
©
tial bitst tracti 5
S VT S partial ditstream extraction o)
| bitstream linking [bitscan] [bitscan] z
2

|HH it
repository for the run-time system

m novel tool [] third party or vendor tool

74

Design Flow

B0 ReCoBus-Builder, H=E3 I ReCoBus-Builder

FPGA Export Record Options Help FPGA Export Record Options Help

B Logic View | DL View | Output .)Orplanning an(§ Bl Logic Yiew lxDL\.ﬁewl Dutpul}
" wnication synttg | =
eCoBus-Builde

i

|

[Tile View [Bus Yiew [Block Selection [14 Bars [Dedicated Read [Shared \white I Shared Read [Dedicated ‘Wi

Bus-P,
Ressource Slats

|60 ReCOBUS
|1F|essouceS|0tWi HEE = i |/O bars

From Row tol
[Hl=

Bus Direction

I | ; PAR]

Bus-Parameters
Ressource Slots

T

Ressouce Slot Wi

'Om/
Q
(@)
m

Dedicated Read l Shared ‘wiite l Shared Read l Dedicated Writel General Setup

H\

bitgen] ' |puildr

©

~“ltscan]

v

initial system
bitfile

repository for the run-time system

bitlink module.bit X Y \

static.bit initial.bit 75

Design Flow

Modules might be implemented using different
shapes/resources (design alternatives)

Goal: higher utilization

Interesting for com-
ponent based system
design (no place and
route)

Simplified system
integration based on
standardized interfaces

Enhanced IP-reuse

B S S
LI | 0 ke i
T o el R

% i 6
[e
| e
|ﬁ'ﬁ5"“igl_}‘“>a

T R bt s IR
ol sy 7'3@1_@\ wnbe gy
L e I T

L R T R T

rlrrrrlrrrag
LN LA i
] vy orw by oy oy a o Mg

AEmeRLL Lm0 2 multiplier,
logic only 2 multiplier, 6 logic slots
30 slots 6 logic slots (includes gap)

76

Design Flow: Blocking

O O O O O O [[e (T O W N W W
O v O O O O e o 1 P I
DJ DF D, Dd DF DP Dd Dd %E _L[Ijsi:iftliiiln:nd End Pips in these Directions S ey O -ﬁ? EE ﬁ! Dﬂﬂ Dd "‘} F b?:
O O O O O O O O ;: " o o[(O O O
O Ol Ll T |52 ive || S { | |Sei L ¥ o 0 |
F¥MFFFFELIce EEEsE T o\l
g;ﬂ!ﬂ !ggg ?_F 2E PD[STCEEI'ZZ:;B and Hexlines EE hﬁ ! iﬂl ﬂi ﬂ| |'
B/ BiliDe B B I H | e N S

2= N || HH = T T ﬂ*

b
b7
W

77

Design Flow: Xilinx PlanAhead

New advanced GUI for the complete FPGA design flow

Project management

Floorplanning .. A

Critical path analysis lanAhead
(timing) 12 92
Implementation Viewer i; X”—INX« g&ﬁyg?llat}:iﬁiillff.ﬁ.ll Rights Reserved,

Source: Xilinx

Integration of the vendor specific partial flow

78

Design Flow: Xilinx PlanAhead

1. Step: Synthesis of all partial and static modules in
individual netlists
(Static netlist has black boxes for the modules)

2. Step: Creation of a new
PlanAhead project

3. Step: Creation of
Reconfigurable Partitions

A reconfigurable partition
(RP)consists of several
reconfigurable modules
(RM)

Assign a partial netlist to
each RM

A RM can also be a black
box (empty module)

Metlist Design - netlist_1 * - xcevlx240tff1156-1 (activa)

[Metlist

=A 1 =
by e |

s11op

@~ = Mets (165)

= [Primitivies (1520

D Ui_clocks (clocks)

3 U1_RP_Bram (recan_tlock_brarm)
C";'- [Eeconfigurable Modules (2}
<» BramFirst

i Bramsecond

o= [Mets (24)

— [i| RAMBIE _inst (RAMEZS)

— L] XST_GND (orD)

L] en_Im _1_ ol IR _ 0 (IR
@ [U2_EP_Coumt (recon_block_count)
d?— = Eeconfigurable Modules (2}
< CountChif
i CountCow
g Mets (12 1)

Primitives (11<)

dh Sources | & Timing Canstraints Physical Constraints

5] Metlist

79

Design Flow: Xilinx PlanAhead

= 4. Step: Floor planning of the reconfigurable partitions
= Create Area Groups

» PlanAhead automatically creates the communication ports
for the reconfigurable partition

Fhysical Constraints ROa ¥ | g E|.| == — == ‘. |0

i~ e SEiSEEE s e

= Port proxy logic: |-=r

LUT1 (anchor re- m D R et

: - Jisiilsleis SHiE i iR

quired for physical sle=ste =5l et

i m p | e m e n tat i O n) ? Ei;r:jgrrar?”inurces dowyou wish phlack_U2_RP_Count to % %

Grids == o

4 Sources @ Timing .. B Physical. < Configur., G Neti] FISLICE %% E

uck Properties g O FH &

« PlanAhead oo i

| phlock_UZ _EP_Count =) B

" [= :

automatically = SEE

Parent: - [ROOT - [IDELATCTRL EE Er

creates the user L

. . & == :

constraints file oo S

(UCF) with the e e
bO u nd i ng bOX General Statistics Instances Fectangles Aftributes OK I | cancel |

Source: Xilinx

definitions of the RPs 80

Design Flow: Xilinx PlanAhead

= 5. Step: Run design rule check (DRC) to verify the design

= 6. Step: Create the first reconfigurable configuration
= Consisting of the static module and for each RP a RM
» Implement this configuration
* Promote this configuration

. 7 St . C .t f .th Project Manager Netlist Design - netlist_1 - xc8vl=240tff1156-1 (activeal
. ep u rea e Ur er - Netlist Design - fC-Dr:ﬂEulratl.D_ljns . 4 00 X
CcO nfl g u ratl ons [B] Resource Estimation Configuration [Mocule variant | Status |
1 . Fun DRC =+ config_l (3) Pramoted
fOr eaCh mOd U |e In a R P . @) . [+ Sranic Logic Promated
@ Run Maise Analysis “oF U1_EP_Bram BramFirst Fromoied

m |mport the static design & Report Timing % U2_RP_Count Countii Pramoted

iy, Siack Histogran

* Implement the partial ||, ... s
module >

Imiplernert

w

£ Sources & Timing .. B Physical - <% Configu.. 5] Metlist

Implemented Design w

= 8. Step: Create the static
and partial configuration bitfiles

81

Design Flow: Xilinx PlanAhead

Differences between the ReCoBus-Builder approach and PlanAhead:

= Slot-style or grid-style vs. island style reconfiguration (island style
has no external fragmentation problem > simple placement)

= ReCoBus allows module relocation) .
: : L proxy logic
and multi module instantiation _ £ e

= Proxy logic bounds a module to a
particular fixed region (RP)

= Example: 3 islands and 4 kinds of
modules requires 3x4=12 physical
implementations (place&route)

{NAND

= All partial modules have to be re-implemented in case of changes
in the static system (does not scale for complex systems)

82

Design Flow: FPGA Issues

In Xilinx FPGAs, the smallest atomic piece of configuration data is a

configuration frame that contains data for all (older devices) or a set
of vertical aligned CLBs (newer devices)

= Arbitrary configuration update is possible using
readback-modify-write

a) readback modify write b)

| | 0| 12 byte

' . ' ' CLB| 10 byte

s —A/shadﬂw/— N, Al 4

H E - 5 ﬁ E
My i B ',
I I m ‘" | CLB| 10 byte
2 /O | 12 byte

» Instead of readback, a configuration image might be stored in
memory to avoid the relatively slow readback process

= Warning: Using LUTs as memory elements (e.g., SRL16 mode)
might result in side effects, when updating modules above or
below these primitives because LUT values get overwritten.

Run-time Management

= Main problem: online temporal module placement

Problem: map a DFG G = (V.E) " —
onto a reconfigurable

area such that the
schedule is feasible
and the total execution
time is minimized.

In other words:
= computing module placement positions
= and schedules

= Question: predictable (offline) vs. unpredictable (oline) problem

84

unsorted stream

PR example: Sorting for Database Acceleration

= Sorting contributes to 30% of the CPU time in huge databases

mem-contr.

2GB/s [PCle
8X

FPGA

initial step

input: unsorted data stream
(T T e e T T T g

initial step: fully sorted sequences
HNEEEEEEEEEEEEEEEEEEEEEEEnE

[intermediate steps]: merging
| | | | | | | | |

final step: merge and emit result
| |

.) prefetcher

= gt

~

} max burst size

— —
—A>R > K > K
— —

|+ max latency

%A %B C
c > >
D FPGA

/ sorted output

final step

context switching

50% area saving or 4 times larger problems as compared to a static design

= Next step: hierachical reconfiguration: swap comparator
cells for different data types (integer, text, ...) 85

PR example: Custom instructions

= Fine-grained communication architecture for flexible instruction
placement

OP A e
------ c g OP_B SN

register file —
OP A<=— U—/OP—B B A
instruction

- - conf.| |conf. : I A Il e
Instruction ?:/7 instr.| |instr] register S s e
file —t—

= |dentical routing for OPs and results in each slot

= Both operands are available in each slot
(end point & middle access)

= Commutative instructions (e.g., A > B)
» |mplementation alternative
= Bitstream manipulation

86

PR example: Custom instructions

Instruction slices slots bitstream latency (max/av)

64-bit XOR gate | 19 (40% 1 264 KB 7.04/5.95ns
CCITT CRC 33 (34% 2 5.28 KB 5.32/3.98 ns
sat. add/sub 70 (73% 2 528 KB 9.89/7.81ns
barrel shifter 90 (94% 2 528 KB 11.07/7.88 ns
5
1

N N N S’

'"1"-bit counter | 214 (89%) 13.2KB 11.37/8.25ns
mask & permute | 16 (33%) 264 KB 5.94/4.05ns

= Direct connection (no ,proxy logic®)
= Swapping of instructions:

» Dedicated load commands

= Triggered by a trap handler

87

