Chapter 8

Design Methods and Tools for Improved Partial
Dynamic Reconfiguration

Markus Rullmann and Renate Merker

We dedicate this chapter to Prof. Wunsch
on the occasion of his 85th anniversary.

Abstract In current FPGAs the overhead associated with partial dynamic reconfig-
uration limits the application of this method in system design. We review the origins
of this overhead and present a novel approach to solve this problem. We introduce
the reconfiguration state graph which is used to describe dynamic reconfiguration
for individual resources and to assess reconfiguration cost. We present new method
to map reconfigurable modules to resources such that the reconfiguration cost are
small. The method can be applied to both digital circuits and dataflow graphs. We
demonstrate that we can exploit the trade-off between resource requirements and
reconfiguration cost by a unique high-level synthesis tool. We further discuss how
our methodology can be integrated into a design flow for efficient runtime reconfig-
urable systems.

8.1 Introduction

Reconfigurable computing architectures provide a combination of high data pro-
cessing throughput, similar to ASICs, and the flexibility of a software processor.
In such architectures an array of functional units provides the resources to perform
many operations in parallel, thus enabling high throughput. The function of the re-
sources and the data transfer between resources are programmable, hence function-
ality is customized during deployment, after device fabrication. Whereas in recon-
figurable computing systems with one static configuration any anticipated function-
ality must be provided statically, in systems with partial dynamic reconfiguration

Markus Rullmann - Renate Merker
Technische Universitit Dresden, Dresden, Germany, e-mails: markus . rul lmann@gmx . de,
renate.merker@tu-dresden.de

M. Platzner et al. (eds.), Dynamically Reconfigurable Systems, 161
DOI 10.1007/978-90-481-3485-4_8, (© Springer Science+Business Media B.V. 2010

mailto:markus.rullmann@gmx.de
mailto:renate.merker@tu-dresden.de
http://dx.doi.org/10.1007/978-90-481-3485-4_8

162 Markus Rullmann and Renate Merker

more efficient realizations are possible because the functionality can be adapted at
runtime to the requirements.

The design of reconfigurable systems-on-a-chip (RSoC) often follows the prin-
ciples shown in Fig. 8.1. The application consists of a number of tasks. The tasks
are partitioned into hardware tasks (HW tasks) and software tasks (SW tasks). In
the final system implementation, the software tasks constitute the software program
which is run on the RSoC’s CPU. The hardware tasks are implemented as reconfig-
urable modules, which are loaded into the reconfigurable areas of the RSoC during
runtime. This method is called partial dynamic reconfiguration. The partitioning
of the tasks is crucial for the system performance and the requirements of recon-
figurable resources. The reconfiguration between different reconfigurable modules
induces a high runtime overhead. In order to prevent frequent dynamic reconfigu-
ration we introduced multimode reconfigurable modules. A multimode module can
perform the computation for different tasks without reconfiguration.

HW Tasks Reconfigurable Configuration
Modules

Reconfigurable

— o

S%& Program SW Execution

Fig. 8.1 Application partitioning into HW tasks and SW tasks. The tasks are run on the RSoCs
reconfigurable area and the CPU.

y

We investigate the problems of reconfiguration overhead from the device archi-
tecture point of view. Consistently with current methodologies we assume that the
design functionality is partitioned into modules, but we make two important ex-
tensions: (1) modules are not reconfigured completely but based on individual re-
sources. We call this fine grain reconfiguration. (2) one module can provide several
functions for an application, implemented in a multimode circuit.

In this chapter we describe new models, methods and tools that reduce the over-
head associated with the dynamic reconfiguration of reconfigurable modules. The
methods use a new high-level synthesis (HLS) approach to generate reconfigurable
modules that execute the HW tasks. At first we motivate our approach by a short de-
scription of current limitations of partial reconfiguration in Sect. 8.2. In Sect. 8.3 we
explain general reconfigurable module architecture that is produced by our HLS
tool. The models used in the reconfiguration cost assessment are introduced in
Sects. 8.4 and 8.5. In Sect. 8.6 we describe our HLS approach. Experimental re-
sults obtained with our HLS tool are provided in Sect. 8.7. Finally in Sect. 8.8, we

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 163

present our work in a broader context of general system design issues. Here we de-
scribe how our methods should be integrated into an FPGA system design flow and
give further references to related work.

8.2 Motivation

Partial dynamic reconfiguration in FPGAs is usually associated with a module based
design approach, see Fig. 8.1. At first, the designer defines a reconfigurable area on
the device. Second, he implements the reconfigurable tasks as modules that can be
loaded on the reconfigurable area. At runtime the resources in the reconfigurable
area are reconfigured to enable different modules.

Using standard methodology, the reconfiguration cost of the implementation de-
pends on the size of the reconfigurable area, cf. Fig. 8.2. Each reconfiguration is per-
formed by loading a partial bitstream into the device. The configuration bitstream
itself is composed of configuration frames that contain any data needed to configure
the entire reconfigurable area. A configuration frame is the smallest reconfigurable
unit in a device; the size of a frame and configurable logic that is associated with
each frame depends on the FPGA device. Because the standard bitstreams contain
all data for a reconfigurable area, the size of these bitstreams is large, typically hun-
dreds of kilobyte. The configuration port of the device has only a limited bandwidth.
Together, this leads to configuration times in the order of some hundred microsec-
onds. As a conclusion, configuration data becomes often too large for on-chip stor-
age and frequent reconfiguration leads to considerable runtime overhead.

Device Column

Bitstream 1

R Frame Data
Reconfigurable
Area
Bitstream 2
« I Frame
u z I Differences
FPGA Configuration B Data
Port Differences

Frames

Fig. 8.2 Illustration of module-based partial reconfiguration.

If the properties of reconfiguration data are analyzed in detail, it can be observed
that the data does not differ completely between reconfigurable modules: (1) some
of the reconfiguration frames are equal in two designs and (2) the data in two frames

164 Markus Rullmann and Renate Merker

that configure the same part of the device frequently exhibit only a few different
bytes (see frame/data differences in Fig. 8.2). This has implications on the device
reconfiguration at runtime. After the initial device configuration, the reconfigurable
area is always in a known configuration state. When a new configuration must be
established on this area, a new bitstream is used to program the associated device
resources. In the ideal case, the reconfiguration programs only the device resources
that need a different configuration. Currently the granularity of the reconfiguration
is limited by the configuration frame size. For an efficient partial reconfiguration,
only configuration frames that contain new configuration data are used to program
the reconfigurable area. This is only possible if the current configuration and the
frame-based differences are known at runtime.

In the latest FPGA generations (Virtex4, Virtex5) the size of configuration frames
has been reduced considerable, which enables a more fine-granular reconfiguration.
Also, the bandwidth of the configuration port has been increased, which enables
faster reconfiguration. Nevertheless the drawback of existing design flows persists:
reconfiguration overhead depends solely on the reconfigurable area, but not on the
contents of the reconfigurable modules.

The configuration data themselves are the result of the circuit design and the
place and route tools. The configuration data of two modules can become very sim-
ilar if the initial design exhibits a similar circuit structure and the tools place and
route the circuits similarly. In this chapter we describe how the similarity between
reconfigurable modules can be increased in order to reduce the differences in con-
figuration data and therefore reduce reconfiguration cost.

8.3 Reconfigurable Module Architecture and Partitioning

The HW tasks are implemented in the reconfigurable modules. In these modules, the
tasks are executed in parallel to the CPU and other modules in the RSoC. Therefore,
each module needs its own local execution control that runs the task within the
module. The HW task execution is started by the software program running on the
CPU. The software also receives data and status information from the HW task.
The HW task functionality is realized by using computational resources and a state
machine that is implemented in the module. The state machine creates a sequence
of control signals for the resources in order to execute a task.

Here we describe the logical architecture of a reconfigurable module. Our high-
level synthesis tool automatically generates modules with such an architecture. The
modules consist of a datapath unit, a control unit, control memories, a bus interface
and additional I/O interfaces. The general structure is shown in Fig. 8.3.

The control unit operates as a state machine that is split into a state control mem-
ory, which holds the sequence of states and a datapath control memory which stores
the control sequence for the datapath. The datapath unit contains registers as storage
elements for variables, operations to process data, and multiplexers to control the
dataflow on the datapath connections. The control signals of these units are driven

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 165

Datapath Control Memory
State Control Memory

State Control

next state

start state

‘ Bus Interface
N

~~ Control Connection ~~ Data Connection

Fig. 8.3 Reconfigurable module architecture used by the HLS tool.

from the datapath control memory. The operations can realize either math and logic
functionality or they are used as an interface to external I/O. External I/O can realize
bus master accesses and access to FIFOs, memories and other periphery.

The amount of reconfiguration can be chosen if the module is partitioned into
static and dynamic sub-modules accordingly. With existing methods, the whole
module would be implemented as one monolithic reconfigurable module. Instead
we propose to keep the bus and I/O interfaces static and to reconfigure the contents
of the control memory and the resources of the datapath independently. Thus re-
configuration can be used for a subset of resources, depending on the configuration
differences between modules.

8.4 Reconfiguration State Graph

The current configuration and the partial reconfiguration of an FPGA must be man-
aged at runtime. A reconfiguration state graph (RSG) [6] is used to model the par-
tial reconfiguration. The RSG defines the configurations and the reconfiguration
formally. The RSG describes the different configurations available and for each re-
configuration it can be decided what resources must be reconfigured. It provides
a framework for reconfiguration management and reconfiguration overhead assess-
ment.

The RSG is defined as a digraph G(A7,&T) where the set .47 of nodes @
represents the reconfigurable modules and the set &t of edges e = (i,]) rep-
resents the reconfiguration from reconfigurable module ¢ to reconfigurable mod-
ule j. With d : A5 — 2™ for each reconfigurable module i a configuration
d(i) = (d(9)1,...,d(i)m) is given. The set & denotes possible configurations of
a resource. The elements d(i);, k = {1,...,m} describe the configurations of the

166 Markus Rullmann and Renate Merker

smallest independent reconfigurable resources k in a device. The reconfiguration
r : & — {0,1}™ describes for each edge e = (4,j) € &t which resources & in
a device must be reconfigured in order to change a current configuration d(7) to a
new configuration d(j). Hence, if (i) # d(j)x (i.e. reconfiguration of resource k
is necessary) r(e)r = r((¢,7))r = 1 and if d(¢)r = d(j)x (i.e. reconfiguration of
resource k is not necessary) r(e), = r((¢,7))r = 0.

The reconfiguration overhead can now be computed on the basis of the RSG.
We assume that each reconfiguration is performed once. The average number of
resources that are reloaded if reconfiguration occurs is given by:

1 m
e = Tg >N wik)r(e), (8.1)

e€ér k=1

where the function w1 (k) yields the cost for the reconfiguration of element k. We
assume that the reconfiguration time is proportional to the weighted sum of recon-
figured resources and therefore c,. is called average reconfiguration time.

The RSG model is further illustrated in Example 8.1.

8.5 Module Mapping and Virtual Architecture

The RSG model describes only how the reconfiguration overhead is affected by
the configuration data in d. For any module functionality there exist many possible
realizations, where each yields a different configuration d. We have developed a
method to map the original HW tasks to the reconfigurable modules such that the
differences between module configurations are minimized. As a result, the average
reconfiguration time is reduced, too.

We observe that functionality of a module is given as a structural representation
until the module is finally translated to binary configuration data. It is not possible to
describe the structural representation directly as a configuration d, because the func-
tionality is not directly related to fixed resources. Here, we introduce a model that
enables us to provide a configuration d(¢) for any structural representation of a mod-
ule 7. First, we define the structural representation formally as a digraph and then we
map the digraph to a virtual architecture (VA) in order to derive the configuration
d (7). For any such mapping we can therefore compute the reconfiguration overhead
and thus can optimize the mapping accordingly, without creating bitstreams for dif-
ferent mappings.

A module i € A7 is represented by a digraph G;(.4;, &;) where the set A4}
of nodes defines the functions used by a module and the set &; of edges defines the
data transfer between the functions. The resource configuration required by a node is
assigned by the function 1 : .4; — 2. Note that the digraph can describe structural
representations at several levels in the design flow, e.g. it can describe dataflow
graphs, synthesized digital circuits etc. The digraphs G;,i € A7 are called input
graphs.

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 167

The input graphs of all modules ¢ are mapped to a VA. A VA is defined as
a digraph Ga(4a,&n). The nodes A4 denote reconfigurable resources and the
edges &x denote reconfigurable interconnect. Furthermore we define an allocation
a : A; — #a, which maps the node of any input graph to a resource in the virtual
architecture. As a by-product the edges from the input graphs are mapped to the VA,
too. The most important feature of the allocation is that the different input graphs
are mapped to a common context, and hence, their configuration can be compared
to each other.

Now we specify for a module ¢ the configuration of the VA, i.e. the configuration
of the resources n € .44 and of the interconnects e € &5 that realizes the module on
the VA. The configuration of these m = |.#a| + |&a| elements is given for module
iby d(i) = (d(i)1,...,d(i)m,) as follows:

e The configuration of resource ny € Aa,k € {1,...,|A4al} is specified by
d(?)x = 1(n;) if a node n; € A exists with a(n;) = ng, otherwise d(i); = 0.

e The configuration of interconnect e, € &a, k € {|Aa] + 1,...,m} is given
with d(¢), = 1, if an edge e; € &; is mapped to an edge e € &, otherwise
d(i)r = 0.

In summary, we provided a formal definition of the module’s structural repre-
sentation and an abstract reconfigurable architecture model. An allocation describes
how the module is mapped to the architecture model. In addition, the input graphs,
the allocation, and the VA define the configuration in the RSG model. Thus, we
can calculate the reconfiguration cost. The model is illustrated in Fig. 8.4. In or-
der to reduce reconfiguration cost, we are interested in an allocation that minimizes
reconfiguration cost.

Reconfigurable Virtual Reconfiguration
Module Architecture State Graph
d(1) e
Gl(%véal) RN ’, @\
P ELC R
Go(M2,8) |- 7% GA(«/VA,@@A) @]
: -7 \\::*—»fo
M) |- d(N) T
Gn (AN, 6N) @
Crc

Fig. 8.4 Mapping of the structural representations of modules to a VA and its relationship to the
RSG model.

Example 8.1. Consider three modules 1, 2, and 3 represented by the input graphs
G1,G2,G3 shown in Fig. 8.5. The nodes n; € 4; of the input graphs are labeled
with their respective configuration 1(n;) = f;, e.g. node n requires a configuration
1(nq1) = f1 of the resource in order to realize the required functionality.

168 Markus Rullmann and Renate Merker

The VA graph is depicted in Fig. 8.5, too. The VA Ga(. A4, &a) is given by the
elements A5 = {n},nh,n%,n,} and & = {es, eg, 7}

For each node n; in the input graphs G1, G, G3 the allocation to a node nj, of
the VA is shown, i.e. a(n;) = nj,. The allocation of an edge ¢; = (n; ,n;,) € &
results directly from the allocation of the nodes n; ,n;, . For example, the edge
(n1,n9) € & is allocated to edge eg = (a(n1),a(ny)) € &x of the VA.

The configuration d(7) of the VA that realizes the functionality required by mod-
ule ¢ is depends on the allocation of nodes .47 and edges &1. The configuration
d(:) = (d(é)1,...,d(¢)7) describes the configuration of the resources and inter-
connects in the following order: n}, nb, n%, n}, es, eg, e7. For example the alloca-
tion of module 1 yields the configuration d(1) = (I1(n1),1(n2),1(n3),0,0,1,1) =
(f17f27.f370707]-a 1)

The RSG model related to the input graphs G1, G2, G3 contains the modules
A1 = {1, 2,3} and the reconfigurations between the modules & = {(1, 2), (1, 3),
(2,1),(2,3),(3,1),(3,2)}, cf. Fig. 8.5. The reconfiguration r((¢,j)) is derived
from the configurations d(¢),d(;) of the modules %, j. Consider the configurations
d(1) = (f1, f2, f3,0,0,1,1) and d(2) = (f5, f6,0, fa,1,1,0): the related recon-
figuration yields r((1,2)) = (1,1,1,1,1,0, 1) because the configuration of all ele-
ments & differs except for k = 6. The edge eg is allocated by both configurations.

The reconfiguration for the full RSG is as follows: r((1,2)) = r((2,1)) =
(1,1,1,1,1,0,1),r((1,3)) = r((3,1)) = (1,1,1,1,1,0,0),r((2,3)) =
r((3,2)) = (1,1,1,1,0,0,1). If we assume a unit weight for all reconfigurable
elements, i.e. wi(k) = 1,k € {1,...,7}, then the reconfiguration cost (Eq. (8.1))
evaluate to:

1 1
Crc:6(6+6+5+5+5+5)=5§.

8.6 High-Level Synthesis of Reconfigurable Modules

In this section we describe our methodology that enables us to compute allocations
that lead to minimal reconfiguration cost. More specifically we implemented the
methodology into a high-level synthesis (HLS) tool. The tool receives the func-
tionality which must be implemented in the reconfigurable modules as ANSI-C like
source code. The source code is compiled into control dataflow graphs (CDFG) first,
one for each C-function. The CDFGs are considered as input graphs to our alloca-
tion problem. The tool performs four essential HLS steps: (1) for each node in the
CDFG an appropriate resource type is chosen, (2) scheduling assigns an execution
time to each node, (3) each node is allocated to a resource instance in the datapath
which is described as a VA, and (4) architectural synthesis creates the submodules
according to the module architecture, i.e. the control unit and the datapath unit.
HLS provides the ideal abstraction level to describe reconfigurable modules.
From the designer’s point of view, it is much easier to use C-like descriptions of the
algorithm: they can be modified more easily and they can be integrated into system-

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 169

Input Graphs Virtual Architecture Reconfiguration

@ @ State Graph

a(ni) =nj,a(n) =ny, d(1) = (fi,/,/,0,0,1,1)
a(n3) =njy,a(ng) =nly, d(2) =(f5, /6,0, f1,1,1,0)
ans) = nalng) = sy A(3) = (fio.forfro o 1, 1,1)
Gy a(n7) = ny,a(ng) = nj,
(no) = ny,a(nio) = nj

Fig. 8.5 Input graphs G'1, G2, G3 for Example 8.1. The input graphs are mapped to the VA Ga
provides a common reference for the image graphs.

level simulations. It is also possible to adapt the hardware/software partitioning late
in the design process because functions can be moved to the software processor or to
hardware modules with little effort. On the tool side, the high-level descriptions pro-
vide a great deal of freedom to map the functionality to a datapath. In our work we
exploit this freedom in order to generate reconfigurable modules with small recon-
figuration overhead. More specifically, we investigated several methods to choose
the resource types in HLS step 1, and we implemented a resource allocation method
that takes advantage of our VA model to solve HLS step 3.

Both reconfiguration overhead and resource overhead in HLS is avoided by re-
source sharing. In intra-module resource sharing, several CDFG nodes of one mod-
ule are mapped to the same resource instance in the VA, thus reducing resource
overhead. In inter-module resource sharing, several CDFG nodes of multiple mod-
ules are mapped to the same resource instance in the VA. As a result, the resources
are used in several modules and are not reconfigured between those modules.

In the following we describe the HLS steps 1 and 3 in more detail.

8.6.1 Resource Type Binding

In HLS step 1, Resource type binding can either enable or disable the reuse of VA
resources in step 3. In extension to the input graphs defined previously, the CDFG
nodes represent fixed operations or variables. An operation (or variable) can only

170 Markus Rullmann and Renate Merker

be executed (or stored) on selected resource types. During resource type binding,
one resource type is chosen for each CDFG node. In the resource instance binding
step, the allocation can only be chosen such that each node is allocated to a resource
instance that is of the previously specified type. The resource type binding defines
the potential reuse of nodes and edges in the VA because it enables or disables
resource sharing possibilities between nodes. We investigated several different type
binding strategies in our research in order to see how much the strategy affects the
final results. We assume that many nodes can be bound to resource types of different
complexity, which effects resource sharing: e.g. an addition could be bound to a
simple adder-resource or to a complex ALU-resource. The different type binding
strategies are stated below:

(a) Minimum Cost Resource Type. Here, we choose a resource type for each node
independently with the objective to select the least costly one, e.g. in terms of
FPGA resources.

(b) Minimum Number of Resource Types. The resource types are chosen such that
the number of different resource types becomes minimal. As a result, it is pos-
sible that there are fewer resource instances in the VA because resources can be
shared more often. For instance two nodes may realize two different functions,
but if they are mapped to the same resource type, they may share a resource
instance in the datapath. The number of resource types can be minimized either
over each task independently or for all tasks at once.

(¢c) Minimum Number of Interconnect Types. The data transfers, indicated by edges
in the CDFG, are mapped to interconnects in the VA. Although the exact inter-
connect is not known during type binding, it is already possible to determine
if two edges may share an interconnect or not. Two edges can share an inter-
connect if the they are mapped to the same interconnect type. The interconnect
type is defined by the resource types were the source node and the drain node of
an edge are mapped to. The minimization of interconnect types targets specifi-
cally the reuse of interconnect in the datapath. As above, the number of resource
types can be minimized either over each task independently or for all tasks at
once.

The effect of the different strategies for resource type binding will be discussed
for the benchmarks provided in Sect. 8.7.

8.6.2 Resource Instance Binding

After a resource type has been selected for each operation and the operation has
been determined in HLS step 2, the operations must be allocated to specific re-
source instances. In step 3, the HLS tool allocates the CDFG nodes to resource
instances and derives the datapath interconnect to realize the data transfer between
nodes. This step is based on the transformation of the input graphs to the VA pre-
sented in Sect. 8.5. In our tool, we employ a heuristic optimization method that is

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 171

based on simulated annealing [7] in order to find an allocation that minimizes a cost
function c. The cost function is a weighted sum of several cost parameters of the dat-
apath. Thus the datapath can be optimized to achieve minimal reconfiguration cost
(for resources and interconnect), resource use, interconnect overhead, and dataflow
multiplexers.

Dataflow multiplexers are introduced into the datapath in order to realize re-
source sharing. Assume that multiple nodes of one CDFG are allocated to the same
resource. However, the data supplied to the resource originates from different re-
sources. For each computation, a dataflow multiplexer connects the output of the
resource which provide the data to the shared resource input. The dataflow multi-
plexers are controlled by the control unit. The node allocation defines the resource
sharing and thus the interconnect structure and the dataflow multiplexers.

Our HLS tool can generate multimode circuits in order to reduce reconfiguration
cost. For a set of tasks it can be chosen, which tasks are implemented in the same re-
configurable module. Hence we can take advantage of inter-module resource sharing
within one configuration, which reduces resource overhead in multimode circuits,
and between different configurations, which reduces overhead for dynamic recon-
figuration.

The resource instance binding step works as follows: The scheduling algorithm
provides information how many resource instances are required. This defines the
number of resources in the VA. Further, the scheduling algorithm provides an initial
solution which assigns each CDFG node to a node in the VA. The initial solution
is modified iteratively by the simulated annealing algorithm in order to improve the
initial solution.

In simulated annealing a current solution is modified iteratively. At first, the cur-
rent solution is slightly modified to gain a new solution. Then, the cost function for
the new solution is calculated. Depending on the state of the algorithm and the cost
of the new solution, the new solution is either accepted and becomes the current
solution or the new solution is discarded.

In our tool, the new solution is derived from the current solution by a random
permutation of the allocation. Subsequently, the interconnect structure in the VA
is derived as well as the dataflow multiplexers. The permutation must observe the
constraints imposed by the scheduling: Any resource instance can only be allocated
by one CDFG node at any cycle at runtime.

For the permutation, a node n € .4; is selected randomly and the allocation
a(n) = r is changed to a randomly selected resource 77, i.e. a(n) = r’. Vice versa
any node n’ € _# which is already allocated to the resource r’ and which is in
conflict with the new allocation of n, will be allocated to the previous allocation
of n, i.e. a(n/) = r. Thus, starting from a valid initial solution we permute the
solutions iteratively such that each solution remains valid.

The cost function used in the simulated annealing algorithm is composed of sev-
eral components. The basis for all components is the allocation to the VA and the
RSG model. In the following we derive the relevant computations. The resource cost
for a module ¢ € A7 is calculated from the input graph G; and the allocation a (cf.
Sect. 8.5).

172 Markus Rullmann and Renate Merker

Here we assume that the resource instances n; in the VA are either in use
(d(%)r = 1) or unused (d(¢); = 0), similar to the interconnect configuration. Each
resource instance and each interconnect is associated with a cost factor wy that rep-
resents either the number of used FPGA slices for a resource instance or the bus
width of an interconnect. Hence, the resource cost for a module ¢ are given by:

Cres(i) = wa(k)d(i). (8.2)

k=1

The resource cost ¢es(?) do not include the cost for the dataflow multiplexers.
A single dataflow multiplexer switches between all edges running into the same
input of node n € #a. For a module 4, the set &4 ,, of such edges are given by
Enn ={ex € Ep e = (n',n),n' € Aa Ad(i) = 1}. The resource cost caused
by the dataflow multiplexers are now computed as:

cmux(i) = Y wa(|Eanl); (8.3)

neN

where w3(z) yields the resource cost of an z-to-1 multiplexer.
The reconfiguration cost are already defined in Eq. (8.1). The overall cost func-
tion for the simulated annealing algorithm is given by:

1 , 1 ,
C= 1 D cresli) + A D (i) + re. (8.4)

LENT €N

8.6.3 Control Generation

The scheduling of nodes from the input graphs is computed in HLS step 2. Together
with the allocation of those nodes, the tool generates the contents of the datapath
control memory and the state control memory. The resources in large datapaths are
often not used in every control state, i.e. the datapath control memory can be under-
utilized. Therefore we combined our tool with the approach described in Chap. 15.
We implemented a greedy algorithm that translates the contents of the datapath con-
trol memory to multi-context tables. In [18] we have shown that this method can
reduce the storage overhead for datapath control information significantly. We fur-
ther proposed two possible extensions to current FPGA architectures that enable a
very efficient and yet flexible integration of multi-context tables into FPGAs.

In this section we have provided a brief overview of a HLS tool for improved
partial dynamic reconfiguration. We have illustrated that there exists a large space
for optimizations that increase the similarity of reconfigurable modules. The aim of
these optimizations are—besides conventional optimization targets time and area—
the reduction of reconfiguration overhead.

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 173

8.7 Experiments

In this section we discuss the efficiency of our HLS approach on a set of bench-
marks. The benchmark set has been implemented with different combinations of
type binding and instance binding methods presented in the previous section. The
results obtained depend on the combination of the HLS steps 1 and 3. This allows
us to analyze the quality of results for each combination as well as the costs in terms
of tool runtime. First we describe the experimental setup and then we discuss the
results and draw some conclusion concerning the design of reconfigurable modules.

8.7.1 Experimental Setup

In Sect. 8.6 we described several options to perform resource type binding. The
resource instance binding can also be performed with different objectives: with
the help of the weight functions wy,ws, and ws we are able to set up different
cost functions that are used by the simulated annealing algorithm as a cost func-
tion. The different objectives are used to optimize the HW task implementations
for different scenarios within a common framework. The implementation scenar-
ios describe how the modules are implemented in the RSoC. Thus we can compare
non-reconfigurable and reconfigurable solutions.

Resource Type Binding Methods The resource type binding methods discussed
in Sect. 8.6.1 (a)—(c) are used in our experiments as follows:

1. Minimum cost resource type,

2. Minimum number of resource types for each module individually,

3. Minimum number of resource types and interconnect types for each module
individually,

4. Minimum number of resource types over all modules,

5. Minimum number of resource types and interconnect types over all modules,

where the cost for interconnect types is not optimized independently but in combi-
nation with the cost for resource types.

Resource Instance Binding Methods Further we investigated several optimiza-
tion targets during HLS step 3 that were combined with the different type binding
methods. The different optimization targets for the instance binding are as follows:

1. Minimum average resource and interconnect cost of the tasks individually,

2. Minimum resource and interconnect cost for all tasks merged into one datapath,
3. Minimum average resource reconfiguration cost,

4. Minimum average resource and interconnect reconfiguration cost.

Implementation Scenarios In this work we compare the non-reconfigurable and
reconfigurable implementation of HW tasks, both for existing methods and for our
new methodology. The following implementation scenarios are considered:

174 Markus Rullmann and Renate Merker

o A: static, parallel implementation. Classic implementation, where each HW
task is implemented as an individual module, which is placed statically on the
device. The HW tasks can be executed concurrently.

e B: static, sequential implementation. Our method allows that several HW task
are implemented in a multimode module. The tasks can share resources but can
not operate in parallel.

o C: reconfiguration without reuse of resources. Classic module based reconfigu-
ration. Each HW task is assigned to an individual module which is completely
dynamically reconfigured.

o D: reconfiguration with reuse of resources. In this scenario our new reconfigu-
ration model is applied. It is assumed that only those resources and interconnect
within the datapath are reconfigured that are different between configurations.

With the data obtained from our benchmarks we want to investigate, which resource
type and which resource instance binding strategies lead to the best solution for
a scenario. Further, we will show that the scenarios B and D, which are available
through our methodology, are superior to previous concepts A and C.

Benchmark Characteristics The chosen benchmarks consist of several task sets.
Each task set contains tasks that might be used in a real reconfigurable system.
The tasks within one set are assumed to be reconfigured against each other. Thus
the tasks provide a good example on how our methodology can be employed in
practice. This kind of tasks can be found in many similar work on HLS. Here with
give a short summary of the tasks functionality and complexity by (number of tasks,
total number of nodes for all tasks). The benchmark ADPCM (2 tasks, 280 nodes)
contains an ADPCM encoder and decoder from the MediaBench suite [8]. EDGE
(3 tasks, 422 nodes) contains three different Sobel edge detection filters: a combined
horizontal and vertical filter, a horizontal only, and a vertical only filter. JPEG_DCT
(2 tasks, 613 nodes) consists of tasks that perform an integer based forward discrete
cosine transform (DCT) and a task for the backward transform. Both tasks are also
taken from MediaBench. The JPEG_DCT represents the most complex task set in
terms of operations per input graph. Finally the RGB_YUV (2 tasks, 84 nodes)
describes a color conversion from RGB color space to the YUV color space and
vice versa, this function is used in many image and video coding applications.

8.7.2 Benchmark Results and Discussion

Our HLS tool has been used to implement the HW tasks of the benchmarks accord-
ing to the different scenarios, by using different resource type and instance binding
methods. Fig. 8.6 shows the results obtained for our benchmarks using the scenarios
A-D. For each scenario we present the results for the best overall combination of
resource type and resource instance binding method. For each benchmark, the re-
sults are labeled on the x-axis as follows: scenario: resource type binding method,
resource instance binding method.

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration

Datapath Size [Slice]

[Slice]

[Wire]

7000

4000

175

3500

3000

2500

2000

1500
1000 -
500 -

0

16000
14000
12000
10000
8000
6000
4000
2000

-
pES
%

B: 1,2
C:1,1

ADPCM

D:1,4

A T Al T 4 N
<dda <d S a <d A
EDGE JPEG_DCT RGB_YUV

) Resources ===
Reconfigurable Resources =——

(a)

B:1,2
C:1,1

&

ADPCM

D:1,4

- N - N - N
<@ O Aa <dda <d o a
EDGE JPEG_DCT RGB_YUV

Interconnect ===
Reconfigurable Interconnect =——

(b)

900

6000

800

5000

4000

600

3000

500
400

2000

1000

L<a@ada

ADPCM

La@ada

EDGE JPEG DCTRGB YUV
(c) Cost for resources and multiplexers.

2

300
200
100 e : e

Binding Runtime [sec]

ADPCM
(d) Algorithm runtime for type binding and in-
stance binding.

EDGE JPEG DCT RGB YUV

Fig. 8.6 Comparison of results obtained with selected binding methods for scenarios A-D.

176 Markus Rullmann and Renate Merker

In Fig. 8.6(a) the average amount of module resources used for operations and
storage in the datapath of a module is shown. The bright bars show the average
amount of reconfigurable resources in each module. Similarly, the average number
of interconnect wires used in the datapath of a module are depicted in Fig. 8.6(b).
Here, the bright bars show the average amount of reconfigurable interconnect. Thus,
the average resource cost ﬁ Dic Py Cres() and the average reconfiguration cost
¢rc are shown separately for resources and interconnect in Fig. 8.6(a, b). The aver-
age datapath size in terms of resources, which includes both operation/storage and
multiplexer cost is shown in Fig. 8.6(c). The tool runtime for the type and instance
binding algorithms is depicted in Fig. 8.6(d).

In our experiments we found that the most straightforward resource type bind-
ing method (1) achieves the best overall results in the final implementation for all
scenarios. While the type binding method has a considerable effect on the resource
sharing possibilities, the differences are negligible in the final datapath implemen-
tation. We suspect that there are always good resource sharing possibilities, because
the high-level description uses only a limited set of different operations. We found
that the resource instance binding method has a much more severe effect. For the
classic scenarios A, C we choose instance binding method (1) because in both sce-
narios, the modules are implemented independently. For scenario B we found that
instance binding method (2) performs best, because only in this case the resource
sharing between tasks that are implemented in one module is exploited. Finally for
scenario D we could show that instance binding method (4) performs best in terms
of reconfiguration cost, because both resources and interconnect reconfiguration are
targeted by the optimization.

The scenarios A and C represent the conventional approaches to implement HW
tasks on FPGAs. In scenario A, a static configuration contains all reconfigurable
module, which may lead to a high resource and interconnect overhead but enables a
parallel execution of tasks. As shown in our benchmarks, the resource and intercon-
nect requirements are reduced drastically if the modules are dynamically reconfig-
ured. At the same time, reconfiguration of all resources and interconnects used by a
module causes a high overhead.

The newly introduced scenario B, which implements static, merged datapaths
provides an attractive trade-off between the scenarios A and C. Scenario B requires
much less resources than scenario A because resources are shared between HW
tasks. Further scenario B causes no reconfiguration cost, but scenario C employs
partial reconfiguration of the module. Nevertheless, scenario B requires more re-
sources than scenario C, because the flexibility is gained with additional operations
and dataflow multiplexers, which result in a datapath with more, temporarily unused
resources. Furthermore, it is interesting to note that the differences in the resource
allocation for scenarios B and C are small, cf. Fig. 8.6(c).

In scenario D, the implemented datapaths are optimized for maximum similarity
and hence, for minimal reconfiguration cost in terms of resource and interconnect
resources. Scenario D demonstrates how much the datapaths can be optimized, such
that they differ in only few resources and interconnects. For resources, the differ-
ences are less than 10% and for interconnects, the differences are less than 26% in

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 177

most cases, which is a significant reduction compared to the full reconfiguration of
the datapath in scenario C. However, in scenario D the resource and interconnect
cost were not included in the optimization. Therefore, the datapaths are slightly
more costly in terms of resources and interconnects. Actually, the scenarios C and
D represent two extremes between area optimization (scenario C) and reconfigu-
ration optimization (scenario D). With the flexible weights w1, w2, w3 in the cost
function, we are able to generate intermediate solutions that meet the needs of the
overall system.

The runtime of the binding algorithms shown in Fig. 8.6(d) is comparable for
the scenarios A—C, but the runtime for scenario D is much higher. The resource type
binding has been performed with method (1) in all scenarios. Obviously the resource
instance binding requires a much higher optimization effort, when the result is op-
timized for resource and interconnect reconfiguration cost. From our experience we
believe that this optimization is still much more efficient in terms of runtime and
results, than a similarity extraction of the final netlist. E.g. benchmark JPEG_DCT
contains a total of 613 nodes in the input graphs for which quality binding must
be found. However, at netlist level the similarity extraction must be performed for
2 x 1800 slices, which is much more complex.

The performance of the datapath implementations is very similar. The task ex-
ecution cycles are equal in all scenarios because the same scheduling is used. The
maximum clock frequency differs slightly between the scenarios, but usually less
than 10%. However, our optimization does not target the critical path delay directly,
it reduces the complexity of dataflow multiplexers instead.

Although the examples presented here have only a limited number of tasks, we
discuss the development for an increased number of tasks. As we merge more tasks
into one module (scenario B) it is likely that the increase in operation resources is
small. However, because the dataflow in the tasks is different, more flexibility in
interconnect is needed and the overhead in interconnect and dataflow multiplexers
increases. Likewise, if the datapath implementation is optimized for low reconfigu-
ration cost we expect that for more reconfigurable modules the average reconfigura-
tion cost increase, because an efficient inter-module resource/interconnect sharing
can not be achieved for many tasks at the same time. Our predictions are supported
by an analysis in [11] and the fact that FPGAs, which target maximum flexibility,
contain highly reconfigurable resources and very flexible interconnect routing. As a
general rule, in FPGAs about 90% silicon area are used for interconnect and only
10% for reconfigurable logic.

Here we suggest the following strategy for a balanced use of our new methodol-
ogy. HW tasks that are frequently reconfigured against each other should be merged
in one reconfigurable module or optimized for low reconfiguration cost. HW tasks
or the reconfigurable modules that are not frequently reconfigured must not be opti-
mized for low reconfiguration cost. Thus, the implementation depends on the overall
execution behavior of the application. With our methodology it is possible to use the
reconfigurable area more efficiently and to reduce the penalty of runtime reconfigu-
ration for the most critical parts of the application.

178 Markus Rullmann and Renate Merker

8.8 System Design for Efficient Partial Dynamic Reconfiguration

In this chapter we have presented a concise model to describe reconfiguration on the
level of individual resources and interconnect. The cost model is based on the recon-
figuration state graph. We introduced the model of a virtual architecture that allows
us to assess reconfiguration cost for any structural representation of hardware tasks.
The benefits of the model have been demonstrated on several examples, which have
been implemented by our high-level synthesis tool. Finally, we describe a possible
design flow that takes advantage of our methodology.

The general idea of our method, the reduction of reconfiguration overhead by
reducing the differences between reconfigurable modules, is reflected throughout
our proposed design flow for reconfigurable systems. In this section we summarize
the steps of our design flow and provide references to further work.

In the system design phase, there must be decided how the functionality of the
tasks is partitioned into HW tasks and SW tasks. The characteristics of the applica-
tion and of the reconfigurable HW tasks provide information on how many reconfig-
urable resources are required and what kind of runtime management should be used.
Our tools can aid the decision which HW tasks could be integrated into the same
reconfigurable module and provide information on the size of the reconfigurable
area.

Tasks that depend on each other can not run concurrently in a system. Therefore
they can be either integrated into the same reconfigurable module or in different
reconfigurable modules that are configured successively. If those tasks are executed
frequently they should be integrated into the same reconfigurable module because
then dynamic reconfiguration is avoided. Of course, this is only possible if the mul-
timode module fits on the reconfigurable area. More information on the partition-
ing problem is given in Chap. 9. An alternative approach is described in Chap. 4:
In hyper-reconfigurable hardware it is assumed that a sequence of configurations is
known. Next, the sequence is partitioned into hypercontexts which contain reconfig-
urable resources and resources that are static within the hypercontext. The concept
can be interpreted in our HLS context as follows: The sequence of configurations
is similar to the sequence of control data supplied to the datapath. For such a se-
quence it can be derived with the methods described in Chap. 4, which parts of
the sequence should be grouped into a reconfigurable module in order to minimize
reconfiguration cost.

The RSoC is usually managed at runtime by an operating system (OS), which
has been adapted to support dynamic reconfiguration. Examples for such systems
are described e.g. in [4, 20, 19, 10]. In [1] we have demonstrated a video-based,
realtime region-of-interest-detection application. The application demonstrates the
capabilities of our HLS tool and the integration of HW tasks and the ReconOS OS
(cf. Chap. 13). The application contains a HW task that runs as an independent
threat, parallel to the software application. The HW task sends continuously data to
the software application via the ReconOS API. As a hardware platform we use the
ESM, cf. Chap. 3.

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 179

For design entry, the two major methods are HLS and synthesis from register
transfer level (RTL) code. During this design phase it is possible to increase the
reconfigurable module similarity significantly by special design practices. A brief
overview of our HLS method is presented in this chapter, more details can be found
in [16, 15]. We also explored possibilities to increase similarity during RTL de-
sign. Here, the designer can describe digital circuits that have an intended similarity
[17, 12]. Expert knowledge of the device architecture and synthesis is necessary to
achieve good results. Other synthesis methods that are used to reduce reconfigura-
tion cost are described e.g. in [3, 9, 2].

The similarity information, which is required later in the module implementation
phase can be provided either by the synthesis tool or it can be derived after synthesis.
As discussed before, the HLS tool directly generates the similarity information. In
addition we have developed a tool that is able to extract the similarity from generated
netlists after synthesis [13].

In an FPGA design flow, the synthesized netlists are mapped to device resources
before place and route. During the mapping the netlist elements are assigned to de-
vice specific resources, e.g. logic blocks (Slices). In this mapping several netlist el-
ements (logic and interconnect) can be assigned to the same device resource, which
may destroy the module similarity or invalidate similarity information. We have de-
scribed a mapping tool [14] that is able to take advantage of the similarity instead.
The mapping tool treats all netlists of reconfigurable modules at the same time and
thus can retain the similarity directly. The tool takes the reconfiguration cost model
into account in order to improve the mapping result.

For our methodology, existing place and route tools must be extended in order to
take advantage of the similarity information. The tools must observe the following
constraints: nodes that are allocated to the same resources in the VA must be placed
on the same device resource later on. Similarly, edges that are allocated to the same
interconnect in the VA must be routed using the same switch box configuration.
With existing tools this can only be realized to a limited extend, e.g. by using the
guide mode in the Xilinx ISE tools. This method has been used in [17, 12].

Finally, the placed-and-routed reconfigurable modules are transcribed into bit-
streams that contain the binary programming data for the device. Because we use
partial reconfiguration, the bitstreams contain only data that is relevant to adapt the
reconfigurable area to the new module. In the established EAPR design flow, the bit-
streams for the module contain the full configuration of a predefined reconfigurable
area. The authors in [5] describe a tool that can produce bitstreams which remove
the frames from the bitstreams which are static in all modules. We have described
another method to create partial bitstreams in [15]. There, the reconfiguration bit-
streams are chosen such that minimal reconfiguration time or minimal storage of
configuration data is ensured. The method is based on the RSG model described
above.

Acknowledgements Supported by DFG grant ME 1625/3-3, project Development of Methods
and Tools for the Minimization of Reconfiguration Cost, as part of the Priority Programme 1148,
Reconfigurable Computing Systems. We would like to thank all members of the Priority Programme

180

Markus Rullmann and Renate Merker

1148 for the fruitful discussions at the project meetings and for the close collaboration within the
programme.

References

11.

12.

13.

14.

15.

. Angermeier, J., Majer, M., Teich, J., Braun, L., Schwalb, T., Graf, P., Hubner, M., Becker, J.,

Lubbers, E., Platzner, M., Claus, C., Stechele, W., Herkersdorf, A., Rullmann, M., Merker, R.:
Spp1148 booth: Fine grain reconfigurable architectures. In: International Conference on Field
Programmable Logic and Applications (FPL 2008), Heidelberg, Germany, p. 348 (2008)
Aravind, D., Sudarsanam, A.: High level—application analysis techniques & architectures—
to explore design possibilities for reduced reconfiguration area overheads in FPGAs executing
compute intensive applications. In: Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, pp. 158-158 (2005)

Boden, M., Fiebig, T., Reiband, M., Reichel, P., Rulke, S.: Gepard—a high-level generation
flow for partially reconfigurable designs. In: IEEE Computer Society Annual Symposium on
VLSI (ISVLSI’08), pp. 298-303 (2008)

Brebner, G.: A virtual hardware operating system for the xilinx 6200. In: Field-Programmable
Logic, Smart Applications, New Paradigms and Compilers. LNCS, vol. 1142, pp. 327-336.
Springer, Berlin (1996)

Claus, C., Miiller, FH., Zeppenfeld, J., Stechele, W.: A new framework to accelerate Virtex-
II pro dynamic partial self-reconfiguration. In: IEEE International Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007, pp. 1-7 (2007)

Heron, J., Woods, R., Sezer, S., Turner, R.: Development of a run-time reconfiguration system
with low reconfiguration overhead. J. VLSI Signal Process. 28(1-2), 97-113 (2001)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
4598, 671-680 (1983)

Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: A tool for evaluating and syn-
thesizing multimedia and communications systems. In: Proceedings of the 30th International
Symposium on Microarchitecture (MICRO-30), Research Triangle Park, USA, pp. 330-335
(1997)

Moreano, N., Borin, E., de Souza, C., Araujo, G.: Efficient datapath merging for partially
reconfigurable architectures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 24(7),
969-980 (2005)

Nollet, V., Coene, P., Verkest, D., Vernalde, S., Lauwereins, R.: Designing an operating system
for a heterogeneous reconfigurable soc. In: Proceedings of the International Conference on
Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, France (2003)
Rullmann, M.: Models, design methods, and tools for improved partial dynamic reconfigura-
tion. PhD thesis, Technische Universitidt Dresden (2009, to appear)

Rullmann, M., Merker, R.: Design and implementation of reconfigurable tasks with minimum
reconfiguration overhead. In: Dynamically Reconfigurable Architectures Workshop at 19th
International Conference Architecture of Computing Systems (ARCS 2006), Frankfurt/Main,
Germany, pp. 132-141 (2006)

Rullmann, M., Merker, R.: Maximum edge matching for reconfigurable computing. In: Re-
configurable Architectures Workshop at 13th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS 2006), Rhodes, Greece (2006)

Rullmann, M., Merker, R.: A reconfiguration aware circuit mapper for fpgas. In: IEEE Inter-
national Parallel & Distributed Processing Symposium—IPDPS 2007, 14th Reconfigurable
Architectures Workshop (2007)

Rullmann, M., Merker, R.: A cost model for partial dynamic reconfiguration. In: Najjar, W.,
Blume, H. (eds.) International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (IC-SAMOS), pp. 182—186 (2008)

8 Design Methods and Tools for Improved Partial Dynamic Reconfiguration 181

16.

17.

18.

19.

20.

Rullmann, M., Merker, R.: Synthesis of efficiently reconfigurable datapaths for reconfig-
urable computing. In: International Conference on Field-Programmable Technology 2008
(ICFPT’08) (2008)

Rullmann, M, Siegel, S., Merker, R.: Optimization of reconfiguration overhead by algorithmic
transformations and hardware matching. In: Workshop RAW 2005 at the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp. 151-156 (2005)

Rullmann, M., Merker, R., Hinkelmann, H., Zipf, P., Glesner, M.: An integrated tool flow
to realize runtime-reconfigurable applications on a new class of partial multi-context fpgas.
In: International Conference on Field Programmable Logic and Applications (FPL 2009, to
appear), Prague, Czeck Republic (2009)

Steiger, C., Walder, H., Platzner, M.: Operating systems for reconfigurable embedded plat-
forms: online scheduling of real-time tasks. IEEE Trans. Comput. 53(11), 1393-1407 (2004)
Walder, H., Platzner, M.: Online scheduling for block-partitioned reconfigurable devices. In:
Design, Automation and Test in Europe Conference and Exhibition, pp. 290-295 (2003)

	Design Methods and Tools for Improved Partial Dynamic Reconfiguration
	Introduction
	Motivation
	Reconfigurable Module Architecture and Partitioning
	Reconfiguration State Graph
	Module Mapping and Virtual Architecture
	High-Level Synthesis of Reconfigurable Modules
	Resource Type Binding
	Resource Instance Binding
	Control Generation

	Experiments
	Experimental Setup
	Resource Type Binding Methods
	Resource Instance Binding Methods
	Implementation Scenarios
	Benchmark Characteristics

	Benchmark Results and Discussion

	System Design for Efficient Partial Dynamic Reconfiguration
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

