
72

FPGA Dynamic and Partial Reconfiguration: A Survey

of Architectures, Methods, and Applications

KIZHEPPATT VIPIN, Nazarbayev University, Kazakhstan

SUHAIB A. FAHMY, University of Warwick, United Kingdom

Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays
(FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed
systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties
of modern commercial architectures. We then investigate design flows and identify the key challenges in
making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration
has found use, as well as proposing new areas where this capability places FPGAs in a unique position for
adoption.

CCS Concepts: • Computer systems organization → Reconfigurable computing; Embedded systems; •
Hardware → Reconfigurable logic and FPGAs; Reconfigurable logic applications; Methodologies for EDA;

Additional Key Words and Phrases: Field programmable gate arrays, partial reconfiguration, dynamic recon-
figuration

ACM Reference format:

Kizheppatt Vipin and Suhaib A. Fahmy. 2018. FPGA Dynamic and Partial Reconfiguration: A Survey of Ar-
chitectures, Methods, and Applications. ACM Comput. Surv. 51, 4, Article 72 (July 2018), 39 pages.
https://doi.org/10.1145/3193827

1 INTRODUCTION

Field programmable gate arrays (FPGAs) have gone from being chips for implementing glue-logic
to platforms for implementing advanced mixed software-hardware Systems-on-Chip (SOCs). As
their capabilities and sizes have increased, FPGAs have found use in a wide range of domains,
where their reprogrammability offers a distinct advantage over fixed application specific inte-
grated circuit (ASIC) implementations. This capability allows hardware designs to be upgraded
or re-purposed after deployment. An even more differentiating feature of FPGAs is their dynamic
programmability, whereby their function is changed at runtime in response to application require-
ments. FPGAs have also supported partial reconfiguration, where only parts of the hardware are
modified at runtime, for over a decade. However, though the reconfigurable computing community
has demonstrated the effectiveness of these features, they have failed to find favour with a more
general audience, due to a combination of architectural, design, and implementation challenges.

While there have been a number of surveys on reconfigurable computing generally (Compton
and Hauck 2002; Todman et al. 2005), dynamic and partial reconfiguration are only touched upon

Authors’ addresses: K. Vipin, School of Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, Republic
of Kazakhstan; email: kizheppatt@nu.edu.kz; S. A. Fahmy, School of Engineering, University of Warwick, Library Road,
Coventry, CV4 7AL, United Kingdom; email: s.fahmy@warwick.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0360-0300/2018/07-ART72 $15.00
https://doi.org/10.1145/3193827

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

https://doi.org/10.1145/3193827
mailto:permissions@acm.org
https://doi.org/10.1145/3193827

72:2 K. Vipin and S. A. Fahmy

Fig. 1. (a) Typical FPGA architecture composed of configuration memory and hardware logic layer. (b) Multi-

Context FPGAs increase effective logic capacity by using more than one configuration memory plane.

briefly. Some previous work discusses tools for partial reconfiguration developed by specific re-
search groups (Koch et al. 2012; Platzner et al. 2010), but does not survey the large body of work in
this area. This survey is an attempt to bring together the wide body of work in the specific area of
dynamic and partial reconfiguration from the perspectives of architectures, tools, and applications,
with a detailed discussion of efforts to date, and key research challenges standing in the way of
widespread adoption. A detailed survey on these topics serves as a valuable foundation for further
research in this area, as the first examples of general use in the design approach taken by modern
accelerator platforms emerge.

1.1 Background and Motivation

Conceptually, all FPGA devices can be considered as being composed of two distinct layers:
the configuration memory layer and the hardware logic layer (Becker et al. 2007), as shown in
Figure 1(a). FPGAs achieve their unique reprogrammability and flexibility due to this composi-
tion. The hardware logic layer contains the computational hardware resources, including lookup
tables (LUTs), flip-flops, digital signal processing (DSP) blocks, memory blocks, transceivers, and
others. This layer also contains the routing resources and switch boxes that allow components to
be connected to form a circuit.

The configuration memory layer stores the FPGA configuration information through a binary
file called a configuration file or bitstream. This binary file contains all the information that deter-
mines the implemented circuit, such as the values stored in the LUTs, initial set and reset status of
flip-flops, initialisation values for memories, voltage standards of the input and output pins, and
routing information for the programmable interconnect to enable the resources to form the de-
scribed circuit. The function implemented by the hardware logic layer is thus wholly determined
by the values stored in the configuration memory.

Most modern devices have Static Random Access Memory (SRAM)-based configuration mem-
ory and are hence volatile. To change the circuit implemented in the FPGA, a user modifies the
contents of the configuration memory by loading a new bitstream. This operation is called FPGA
configuration/reconfiguration and is generally performed through external FPGA interfaces such as
JTAG or SelectMap (on Xilinx devices) (Peattie 2009). The entire configuration memory is reloaded
and the FPGA remains inactive/inaccessible during this period. FPGAs built using nonvolatile tech-
nologies are not designed to support such dynamic loading of the configuration memory.

Partial reconfiguration (PR) refers to the modification of one or more portions of the FPGA logic
while the remaining portions are not altered. Although the terms dynamic reconfiguration and

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:3

partial reconfiguration have been frequently used interchangeably in the literature, they can be
different. The PR operation can be static or dynamic, meaning that the reconfiguration operation
can occur while the FPGA logic is in a reset state (static) or running (dynamic). It is also not
necessary that all dynamic reconfigurations are partial in nature. For example, in context switching

FPGAs, the whole configuration is changed during reconfiguration, but the operation is dynamic.
PR is supported through external FPGA interfaces as well as special internal interfaces such as the
Internal Configuration Access Port (ICAP) on Xilinx devices (Xilinx Inc. 2010).

1.2 Advantages of Partial Reconfiguration

PR can bring several advantages to FPGA designs. First, the effective logic density of the chip can
be increased by time-multiplexing hardware resources between mutually exclusive computations,
thereby allowing a larger application to be contained on a smaller chip. PR also has the benefit of
reduced reconfiguration time compared to a full reconfiguration, since this time is directly pro-
portional to the size of the configuration file, which, in turn, is proportional to the area of the
chip being reconfigured. This means reconfiguration can be applied in systems with time-critical
requirements. PR is beneficial in adaptive hardware systems, as they can adapt computation to a
changing environment while continuing to process data.

PR is also useful in scenarios where an interface is required to persist while functionality
changes. Consider an FPGA system interfaced with a host computer via PCI Express (PCIe). A
full reconfiguration of the FPGA breaks the communication link, which may even require a host
reboot to re-establish. PR allows the link to be maintained by keeping the interface circuitry ac-
tive while the accelerator portion undergoes reconfiguration. PR also has the benefit of reduced
external memory footprint for configuration files since partial configuration files are smaller than
full configuration files. This can be especially beneficial for embedded systems with constraints
on size, cost, and power consumption.

1.3 Desired Features of a PR Platform

In considering the state of research in dynamic and partial reconfiguration, we set out a set of
desired features that would make the adoption of PR more widespread. These include aspects of
device architecture, design tool support, and runtime system management. An important archi-
tectural property is the supported granularity for reconfiguration. Designers may want to dy-
namically modify portions from as small as a single LUT up to the entire chip. A large granularity
increases the overhead of the partially reconfigurable area on the chip, while a fine granularity
supports flexbility, but may entail significant architectural cost. Another beneficial feature is sup-
port for runtime relocation. This allows the same bitstream to be used to configure a circuit in
different locations on the FPGA, much like the virtual to physical memory mapping in software
environments. Reconfiguration time should be negligible for an ideal PR system. Long recon-
figuration times can outweigh the other advantages provided by PR, since even if the rest of the
system is functioning, waiting for an accelerator to load limits the performance benefit of the ac-
celerator. Faster reconfiguration would allow accelerators to be loaded and unloaded as fast as
task switching in multi-core processors. The reconfiguration operation should be transparent to
the application, such that the system continues with useful work, while reconfiguration occurs,
and that code managing the reconfiguration is not concerned with implementation details. It is
desirable to have a high-level design tool that automates the mapping of an adaptive application
description at the system level to a specific PR implementation, without the need for low-level
architecture understanding.

In the subsequent sections, we analyse the extent to which FPGA platforms and development
tools support these features as well as discuss applications that exploit the advantages of PR.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:4 K. Vipin and S. A. Fahmy

2 ARCHITECTURES

Dynamic reconfiguration was initially proposed to increase effective logic capacity and reduce
reconfiguration time. Early on, the limited resource availability in FPGAs was a major constraint
when implementing large designs. Fetching configuration files from external memory to reconfig-
ure over the (external) configuration ports also resulted in slow reconfiguration. Early dynamically
reconfigurable architectures overcame these issues by increasing the number of configuration con-
texts, allowing much faster reconfiguration, and effectively increasing logic capacity, as shown in
Figure 1(b). These devices were referred to as Context-Switching FPGAs or Multi-Context FPGAs
(MC-FPGAs) (Chong et al. 2005).

For modern FPGAs with multi-million gate logic capacity, lack of resources is no longer the
primary motivation for PR. New driving factors include sharing a single physical device among
multiple users, keeping communication links alive during system reconfiguration, and adaptive
applications with varying computational requirements.

2.1 Academic and Non-Commercial Architectures

The development of dynamically reconfigurable architectures dates back to 1995, when Xilinx filed
a patent for an FPGA, which can store multiple configurations simultaneously (Ong 1995). In the
initial design, there were two configuration memory arrays available in the FPGA, which could
store different configuration data. During alternate halves of a clock cycle, switches at the output
of the configuration memory cells would select the configuration data stored in the first or second
half of the configuration memory array and intermediate results would be stored in data latches.
At the end of every other cycle, the FPGA would output the results of its function.

This idea was further extended in 1997, with a time multiplexed FPGA based on the Xilinx
XC4000E product family (Trimberger et al. 1997). Although combinational logic could be mul-
tiplexed through several configuration contexts, state storage could not. This work used micro
registers to store the outputs of LUTs and flip-flops, with eight configurations supported. Recon-
figuration could be performed in a single clock cycle, taking about 5ns. An inactive configuration
plane could be modified at runtime by loading configuration data from off-chip storage. Through
a special “RAM” mode, user designs could directly access configuration memory, allowing self-
modifying hardware. Hence, MC-FPGAs supported dynamic reconfiguration, but the granularity
of reconfiguration was the entire device.

The main drawback of MC-FPGA architectures was their high power consumption. Due to the
large number of configuration bits and high switching activity, the power consumption of these
devices was in the tens of Watts, making them unsuitable for many applications. Chong et al.
(2005) proposed the reconfigurable context memory (RCM) to tackle this issue. RCM exploits the
redundancy and regularity in configuration bits between different contexts, based on a previous
study that showed that during context switching, less than 3% of the configuration data was mod-
ified (Kennedy 2003). Additionally, ferroelectric functional pass-gates are used in RCM to achieve
compactness and lower power. This design claimed to reduce FPGA area to 37% of other MC-FPGAs
and consume much less power.

Another major hurdle to the adoption of MC-FPGAs was the lack of design tools that could
efficiently map to these platforms. Designs had to be manually partitioned into multiple segments
and mapped to different contexts. Advances in EDA have renewed interest in MC-FPGAs recently
as discussed in Section 2.2.

Another early architecture proposed to support dynamic reconfiguration was the Dynamically

Programmable Gate Array (DPGA) (Tau et al. 1995). Its architecture closely resembles that of an
MC-FPGA, but in this case, each LUT and interconnect cell had an associated 4-context memory

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:5

Fig. 2. (a) GARP architecture with processor and reconfigurable fabric; (b) Xilinx XC6200 architecture.

implemented using DRAM. The motivation was to overcome slow off-chip configuration loading,
which would take several milliseconds to complete. DPGAs supported different usage models with
multiple independent functions in different configurations (DeHon 1996). The prototypes devel-
oped had limited logic capacity, low operating frequency, and a lack of tools. Using DRAM for
the configuration memory also enforced a minimum operating frequency of 5MHz due to DRAM
refresh requirements.

More recently researchers have proposed a new architecture for FPGAs with a single configu-
ration plane that can support runtime relocation through PR (Huriaux et al. 2014). Due to their
heterogeneous architecture, runtime circuit relocation is difficult in modern FPGAs as discussed
in Section 2.2. In this proposed architecture, the hardware layer is logically partitioned into two
(but with a single configuration plane). The first layer, called the homogeneous plane, contains
traditional logic elements such as LUTs and flip-flops and associated routing resources, while the
second layer, called the heterogeneous layer, contains heterogeneous resources such as memory
blocks and signal processing blocks and associated routing. Heterogeneous-only long lines are
connected to the homogeneous routing network through switch boxes at horizontal and vertical
channel intersections, allowing a circuit to be moved horizontally at runtime. The drawback of
this architecture is that it leads to an increase in horizontal delay for routing in the homogeneous
plane, and since the positioning of heterogeneous function blocks is not known at place and route
time, it is assumed that such a block is physically located in a position that can be routed to.

GARP was a dynamically reconfigurable architecture that combined reconfigurable hardware
with a standard MIPS processor (Hauser and Wawrzynek 1997). The reconfigurable fabric was a
slave compute unit located on the same die as the processor as shown in Figure 2(a). Loading and
execution on the reconfigurable array was controlled by a program running on the processor, and
the standard memory hierarchy of the processor was also accessible to the reconfigurable fabric.
Each reconfigurable array was divided into blocks with one block used as control block, and the
others as logic blocks. GARP allowed partial array configuration down to individual blocks. A
physical implementation of GARP was never made available for practical use. In Section 2.2, we
discuss more recent devices that closely resemble GARP.

Researchers have also explored how novel nano-architectures for interconnect and configu-
ration memories could be combined with Complementary Metal Oxide Semiconductor (CMOS)
to offer higher efficiency and improved programmability in next generation devices (DeHon and
Wilson 2004; Snider and Williams 2007; Zhang et al. 2009), though few of these have seen any
fabrication.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:6 K. Vipin and S. A. Fahmy

Recently, work on FPGA overlay architectures has gained some attention in the academic com-
munity. This consists of building a coarse grained architecture on top of an FPGA and targeting
that through design tools (Capalija and Abdelrahman 2013; Jain et al. 2016b). The architecture is
designed to support a particular domain, and the interconnect can be tailored to the domain to
make it more efficient (Jain et al. 2016a). A key benefit cited by researchers working on overlays is
significantly reduced reconfiguration time (Stitt and Coole 2011), since a small number of registers
controlling the coarse grained functional units and routing need to be set to modify the computed
function, rather than a PR bitstream that is setting configurations at the bit-level. The main ar-
chitectural limitation of overlays is that they can entail significant area and timing overheads and
are not as flexible as using the fine-grained FPGA architecture, though it has been suggested that
PR can be used to switch between a variety of different overlays to overcome this (Coole and Stitt
2015).

2.2 Commercial Devices Supporting PR

Presently, the only two FPGA vendors commercially supporting PR are Xilinx and Altera (now
part of Intel).

2.2.1 Xilinx. Among the major vendors, Xilinx’s FPGAs have supported PR for two decades,
and are hence the most popular devices for these applications. The first Xilinx FPGA to support
dynamic partial reconfiguration was the XC6200 series (Xilinx Inc. 1996). This device contained
only a single configurable memory plane and had a tiled architecture with each tile divided into a
number of cells containing functional cells. The functional cells were composed of 2:1 multiplexers
for combinational logic, a flip-flop, and routing resources. Using a special interface, an external
processor could access any specific functional cell in the FPGA (Figure 2(b)), and modify its con-
figuration with the configuration SRAM mapped to the processor address space. Due to a regular
structure with every cell and its associated routing being similar, reconfiguration was simpler with
these devices than for modern ones. Runtime circuit relocation was also possible with such archi-
tectures.

PR became more popular with the introduction of the Virtex-II (Xilinx Inc. 2003) and Virtex-II
Pro (Xilinx Inc. 2011a) series of FPGAs from Xilinx. In these devices, FPGA primitives are arranged
in a columnar fashion. These primitives include configurable logic blocks (CLBs), Block RAMs, and
multipliers. CLBs are the basic logic elements in Xilinx FPGAs, composed of LUTs and flip-flops in
two slices. The number of LUTs and flip-flops in a slice is device family dependent. A configuration
binary file (partial bitstream in Xilinx terminology) can be loaded externally using the SelectMap
or JTAG interfaces. In Virtex devices, Xilinx introduced a new configuration interface called the
ICAP. This made it possible to load bitstreams from within the FPGA fabric. A soft-processor or
a custom state machine could fetch configuration information from external memory and write
to the configuration memory through the ICAP, thereby allowing a circuit implemented on the
FPGA to modify itself autonomously.

In these devices, the configuration memory is organised in frames, which are 1-bit wide and
extend the whole height of the device—hence, the size of a frame is device dependent (Xilinx
Inc. 2004a). A frame does not map to any single hardware resource, but it configures a narrow
vertical slice of many physical resources. Configuration frames are grouped into six different con-
figuration columns depending upon their hardware-mapping, called Input/Output Block (IOB),
Input/Output Interconnect (IOI), CLB, Global Clock (GCLK), BlockRAM, and BlockRAM Intercon-
nect. IOB columns configure the voltage standard, internal pull-up, and other options for the I/O
interfaces. CLB columns program the configurable logic blocks, routing, and most interconnect.
BlockRAM columns program the small internal memory blocks.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:7

Fig. 3. (a) Floorplanning of Virtex-II device showing PR regions. (b) A bus macro showing the connectivity

between the static region and a reconfigurable region. The CLB slices to the left of the module boundary are

implemented in the reconfigurable region and those to the right are implemented in the static region.

For Virtex devices, it is necessary to designate at design time the portions of the FPGA that will
undergo PR. These regions are called partially reconfigurable regions (PRRs) and are composed of
several frames. There are several restrictions on the size and shape of PRRs: they must extend the
full height of the device and must align horizontally with a multiple of four slices. These restric-
tions can make a design inefficient in terms of hardware utilisation, but floorplanning is relatively
simple. Since PRRs extend the full device height, floorplanning is only concerned with the width
of these regions and so they are more like vertical slots as shown in Figure 3(a). Runtime circuit re-
location is still relatively easy for such architectures as shown by the Erlangen Slot Machine (Majer
et al. 2007).

Since a single PRR hosts multiple circuits at runtime in a time multiplexed manner, every circuit
targeted for the same PRR must have a similar interface to the static (non-PR) region. In order to fix
the routing between the static and PR regions, special anchoring logic is necessary. Virtex-II and
Virtex-II Pro devices use internal tri-state buffers (TBUFs) to manage this connectivity. To support
runtime circuit relocation, the relative positions of these TBUFs must also match for different PRRs.
The number of TBUFs available on these devices is restricted and their positions fixed, leading to
further restrictions on the size and positions of PRRs.

The Virtex-4 family of FPGAs (Xilinx Inc. 2008) incorporated architectural improvements over
the Virtex-II with better support for PR. TBUFs were replaced by bus macros (Lysaght et al. 2006),
which are constructed out of LUTs as shown in Figure 3(b). Using LUTs instead of TBUFs for fixing
routing between regions was initially demonstrated by researchers on Virtex-II FPGAs (Huebner
et al. 2004). Since these could be placed anywhere, as opposed to the fixed locations of TBUFs in
the Virtex-II, this allowed for a more flexible arrangement of connectivity. The size of frames was
also reduced in the Virtex-4 (Xilinx Inc. 2008). Unlike the Virtex-II, where frame size is dependent
on device size, it is constant for all Virtex-4 devices. Each frame is 1 bit wide and 16 CLBs high
and contains 41 32-bit words (1312 bits). The reconfigurable region also no longer needs to span
the full height of the device, but rather must be a height that is a multiple of 16 CLBs. Because of
this modified architecture, the floorplanning problem is no longer one dimensional but two dimen-
sional. This has made runtime relocation more difficult since relocation is possible only between
two PRRs with exactly the same dimensions and resource arrangement. The ICAP interface width
was also increased from 8 to 32 bits, considerably improving reconfiguration throughput.

In the Virtex-5 architecture, the entire device is divided into several rows and columns as shown
in Figure 4(a). A row essentially represents a clock region and device size determines how many

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:8 K. Vipin and S. A. Fahmy

Fig. 4. (a) Xilinx Virtex FPGA architecture (b) Zynq SoC architecture.

there are. The columns, called blocks, span the entire device height. Each block contains a single
type of FPGA primitive arranged in a columnar fashion. The FPGA is composed of several tiles

where a block and a row intersect: CLB tiles, DSP tiles, and BRAM tiles. Xilinx uses the term
reconfigurable frame to denote these tiles and these are the basic unit for PR. One CLB tile contains
20 CLBs, one DSP tile contains 8 DSP slices, and one BRAM tile contains 4 Block RAMs. Virtex-
6 FPGAs follow the basic architecture of Virtex-5 FPGAs with a CLB tile containing 40 CLBs, a
DSP tile containing 8 DSP slices, and a BRAM tile containing 8 18Kbit Block RAMs. Xilinx 7-
series FPGAs (Artix, Kintex, and Virtex-7) also have a similar tile architecture with one CLB tile
containing 50 CLBs, and DSP and BRAM tiles containing 10 DSP slices and 10 18Kbits Block RAMs,
respectively.

These improved architecture features enable FPGAs to implement more complex circuits as well
as to reduce resource wastage. Designers are now able to define multiple PRRs with varying sizes
with different kinds of resources. On the other hand, all these architectural improvements make
runtime circuit (bitstream) relocation almost impossible using vendor provided tools.

Xilinx supports PR on newer hybrid reconfigurable devices, such as the Xilinx Zynq-7000 SoC,
too. The Zynq architecture (Xilinx Inc. 2013a) couples a powerful ARM Cortex A9 processor,
standard communication infrastructure, and an integrated reconfigurable fabric, as shown in Fig-
ure 4(b). The ARM processor communicates with on-chip memory, memory controllers, and pe-
ripheral blocks through Advanced eXtensible Interface (AXI) interconnect. Together, these hard-
ened blocks constitute the Processor System (PS). The on-chip PS is attached to the Programmable
Logic (PL) through multiple AXI ports, offering high bandwidth between the two key components
of the architecture. The PS processor configuration access port (PCAP) supports full and partial
(re)configuration of the PL from the PS. The reconfigurable fabric of the Zynq uses the 7-series
FPGA architecture, which can also be partially reconfigured through an ICAP interface within
the PL. Thus, the Zynq architecture bears some similarity to the GARP architecture discussed
earlier.

The latest Xilinx Ultrascale and Ultrascale+ families of FPGAs also support PR. The major im-
provements in these devices are the capability to partially reconfigure resources such as PLLs,
input/output buffers, and high-speed transceivers, which was not possible previously (Xilinx Inc.
2016). These devices introduce a new configuration access port called the media configuration
access port (MCAP), which is connected to one of the PCIe hardmacros (Xilinx Inc. 2015). These
improvements come at the cost of additional reconfiguration time overhead. For Ultrascale devices,
the reconfiguration process is now composed of two stages. Before loading a new partial bitstream,

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:9

Fig. 5. (a) A reconfigurable region in a Stratix-V FPGA with PR region not extending the full FPGA height.

(b) Two PR regions sharing the same programming frames.

the corresponding PR region must be cleaned using a small bitstream. Each PRR requires a separate
cleaning partial bitstream, but the size of this is only about 10% of a normal partial bitstream.

2.2.2 Altera. Altera (now part of Intel) recently began supporting PR on their Stratix-V, Cyclone
-V, and Arria-10 series FPGAs. Adaptive logic modules (ALMs) are the basic building blocks in Al-
tera FPGAs, containing a fracturable LUT with 8 inputs, 4 flip-flops (on the Stratix-V), and auxiliary
circuits such as adders and multiplexers. Multiple ALMs are combined to form logic array blocks
(LABs), which are arranged in a columnar fashion in the device. Columns of memory blocks and
variable precision DSP blocks are also present for efficient circuit implementation. Partial reconfig-
uration is supported for logic elements, DSP slices, memory blocks, and routing resources. Other
primitives such as PLLs and transceivers support only dynamic configuration (not using reconfig-
uration frames) through a special reconfiguration port tied to these primitives.

The Stratix-V architecture is similar to that of the Xilinx Virtex FPGAs, with programming frames

being the unit of reconfiguration (Altera 2013a). Similar to the Xilinx Virtex-II, the FPGA is divided
into multiple columns but only a single row. This results in additional restrictions when a PR region
does not span the full device height and contains memory blocks as shown in Figure 5(a). During
a partial reconfiguration operation, the contents of memory blocks outside the PR region but in
the same columns are also reconfigured. To avoid this issue, PR regions should span the entire
device height or memory blocks above and below the PR regions should not be used by static logic
or other PR regions. Altera also uses LUT-based proxy logic for preserving routing between PR
regions and the static region.

Two different PR implementation schemes are possible, depending on the arrangement of re-
configurable regions. The SCRUB mode is used when programming frames are not shared between
PR regions. In this mode, the unchanged configuration bits of the static region are scrubbed back to
their present values. All configuration bits corresponding to PRRs are overwritten with new data
irrespective of what was previously contained in the region(s).

The two-pass AND/OR reconfiguration scheme is used when configuration frames are shared
among multiple PRRs as shown in Figure 5(b). In the first pass, all the bits in the programming
frame for a column passing through a PRR are ANDed with 0s while those outside the region are
ANDed with 1s. In the second pass, for each frame, new data is ORed with the current value of 0
in the PR region, and in the static region, bits are ORed with 0s. The main drawback is that the
bitstream size of a PR region using the AND/OR scheme can be twice the size of one using SCRUB
mode since each frame is written twice. Furthermore, to individually configure PRRs when regions
share programming frames, multiple variations of bitstreams equal to the Cartesian product of

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:10 K. Vipin and S. A. Fahmy

variants of PR logic (called personas) are required. Since in Xilinx FPGAs, configuration frames do
not extend the full device height, this limitation exists to a more limited extent as PR boundaries are
drawn along device rows. Since the Altera PR flow is still new, we may see similar improvements
to those seen in the Xilinx flow in the coming years.

The new Arria 10 and Arria 10 SoC devices also support PR. The Arria 10 SoC has a similar
architecture to the Xilinx Zynq SoC with an ARM processor system integrated with an FPGA
fabric. For these devices, the FPGA fabric architecture and implementation schemes supported are
the same as for Stratix V FPGAs. Altera uses a special IP block called the Partial Reconfiguration IP
(PR-IP) to send partial bitstream data into the configuration memory from external hosts as well as
from the internal PR controller (Altera 2017). This block supports data widths from 1 bit to 32 bits.
It is also possible to partially reconfigure these devices through a PCIe interface by interfacing a
PR-IP to the PCIe hard macro (Altera 2016a).

The recently announced Altera Stratix 10 architecture includes further architectural changes
that benefit PR. The overall FPGA architecture is divided into multiple sectors, with each sector
having its own configuration memory and reconfiguration infrastructure (How and Atsatt 2016).
Reconfiguration is managed through small processors in each sector called secure digital managers
(SDMs), and the bitstream format for each sector is identical. This presents an exciting development
as it opens the door to making bitstreams relocatable within an FPGA more easily, and also allows
for higher reconfiguration bandwidth with the prospect of configuration data being broadcast
across multiple sectors. However, these devices are yet to reach market, and the supported flows
do not currently exploit these possibilities.

2.2.3 Other Vendors. Other FPGA vendors such as National Semiconductor, Lattice Semicon-
ductor, and Atmel previously supported PR on their FPGA devices. However, this is no longer the
case, partly due to the limited adoption of this technique for practical applications and partly due
to the challenge in providing a robust supported toolflow. We will, however, explore how these
alternative architectures integrated PR.

Lattice Semiconductor produced the ORCA series of FPGAs to support PR (Lattice Corp. 2003).
These were coarse-grained FPGA with a grid of programmable logic cells (PLCs), programmable
I/Os, and embedded RAMs (EBRs). Each PLC consisted of a programmable functional unit (PFU),
system level interconnect (SLIC), and routing resources. PR was done by setting a bitstream option
in the previous configuration sequence that would tell the FPGA not to reset all of the configura-
tion RAM during a reconfiguration. Then, only the configuration frames to be modified would be
rewritten. Here, the reconfiguration was partial but static in nature.

The AT40K series of FPGAs from Atmel supported both partial as well as dynamic reconfigura-
tion (Atmel 2013). The AT40K architecture was a symmetrical array of identical cells except for bus
repeaters spaced between every four cells. At the intersection of each repeater row and column
there was a 32×4 RAM block accessible by adjacent buses. The FPGA configuration memory was
viewed as a simple memory-mapped address-space and the user had full read/write access to it.
These FPGAs were ideal for building adaptive filters, variable coefficient multipliers, and so on,
but unsuitable for logic intensive applications due to limited logic capacity.

The National Semiconductor CLAy FPGA family contained a 56×56 array of fine grained logic
cells (National 1993). The CLAy logic cell (up to 3 inputs, 2 outputs) implemented a set of simple
logic functions like NOR, AND, NAND, OR, XOR, INV, MUX, Flip Flop, and complex functions
using combinations of these (Gokhale and Gomersall 1997). Each cell had two direct connections
to each of the four nearest neighbours, and connections to horizontal and vertical local buses, and
each row could be partially reconfigured using a host processor.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:11

Table 1. Architectural Features of Commercial FPGAs Supporting PR

Architecture PR Granularity Circuit Relocation PR Primitive

Xilinx Virtex-5/6/7 One clock region high Very difficult ICAP
Xilinx Zynq One clock region high Very difficult ICAP/PCAP
Xilinx Ultrascale One CLB Very difficult ICAP/MCAP
Altera Stratix-V/Arria-10 One ALM Difficult PR-IP
Altera Stratix-10 One sector Easy SDM

Tabula also produced programmable logic devices that used a technique they called Spacetime
technology (Tabula 2010), similar to the multi-context FPGAs discussed earlier. Logic, memory, and
interconnect resources were dynamically reconfigured up to eight times in each user cycle. The
Spacetime compiler automatically mapped, placed, and routed a user design into the device using
standard VHDL/Verilog inputs and flows. A major limiting factor of previous context-switching
FPGAs was their power consumption. Tabula claimed to have overcome this through new man-
ufacturing techniques, however, exact power consumption measurements for these devices were
never published. Tabula ceased operation in March 2015 (Lipsky 2015).

2.3 Summary

Table 1 compares the architectural features of some of the commercially available FPGAs support-
ing PR. There remain several research opportunities related to FPGA architecture design for PR.
In modern commercial FPGAs, PR is an auxiliary feature rather than something around which the
architecture is designed. This means many aspects of PR design are tied to low-level architecture
details requiring significant expertise. Limitations on how the configuration memory is accessed
(e.g., only a single active port) limit reconfiguration throughput and prevent parallel PR. Alterna-
tive approaches to organising the reconfiguration memory and how it is configured could make
PR more effective and easier to design for. A fine configuration granularity could lead to higher
reconfiguration time and too coarse a granularity results in resource wastage. More advanced ar-
chitectural PR support could also offer significant power benefits through runtime adaptation of
resource usage. The new Altera sector-based architecture could address a number of these issues
if access to its features is provided. Currently, no commercial coarse grained FPGA architectures
are available that support PR. Commercial architectures have improved in their support of PR, and
coupled with more advanced tools, this can lead to wider adoption in the long term.

3 DESIGN, IMPLEMENTATION, AND SIMULATION TOOLS

In this section, we review design, implementation, and simulation tools for PR systems. We discuss
the steps involved in converting a design specification into a working hardware implementation.
Widespread adoption of PR will depend upon the existence of effective tool chains that offer a high-
level view to the designer, while incorporating low-level architecture understanding. We review
approaches from both industry and the research community.

3.1 Vendor PR Design Flows

The tool flows offered by both vendors, Xilinx and Altera, are similar with slight differences due to
architectural variations; both require a designer who is proficient in low-level FPGA architecture.

3.1.1 Xilinx PlanAhead PR Flow. Xilinx initially offered a difference-based partial reconfigura-
tion flow (Eto 2007). This allowed minor changes, by editing an already placed and routed design
using the FPGA Editor software available as part of the Xilinx ISE software suite. Implementation

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:12 K. Vipin and S. A. Fahmy

Fig. 6. (a) Xilinx PlanAhead partial reconfiguration flow. (b) Altera Quartus partial reconfiguration flow.

tools would then generate a partial bitstream containing only the difference between the new and
old designs. This flow was not scalable to large circuit changes and is no longer supported.

Xilinx later supported PR through a hierarchical module-based design tool called PlanAhead
(Xilinx Inc. 2013b), with the main steps required shown in Figure 6(a). Each PR design is com-
posed of a number of modules, or functional units. All modules are described using a hardware
description language (HDL) or can be pre-synthesised netlists. The hardware design is composed
of two parts, the static region and one or more reconfigurable regions (PRRs). PRRs may contain
LUTs, BRAMs, and DSP slices but cannot contain clock modifying logic such as PLLs and clock
buffers. The static region is the portion of the design, which does not change its functionality dur-
ing system operation. This usually contains a processor running the reconfiguration management
software, internal configuration interface, and memory interface modules. PRRs implement the
reconfigurable modules, and can be reconfigured at runtime. A single reconfigurable region can
implement many modules in a time multiplexed fashion; all reconfigurable modules implemented
in the same PRR constitute a reconfigurable partition.

The first design step is to decide on the number of reconfigurable regions and corresponding
module allocation to them (partitioning). Each individual module is synthesised to generate a cor-
responding netlist. Floorplanning must then be performed manually to specify the locations and
bounding boxes of PRRs in the FPGA fabric. These regions must be rectangular in shape and should
be aligned to clock region boundaries (tiles). Floorplanning details are stored in the user constraints

file (UCF) for incorporation in the implementation stage. The designer must have expertise in low-
level architecture details to efficiently implement the system.

The designer must then determine the valid combinations of modules assigned to the PRRs, to
make up the overall modes of the system; each valid combination is called a configuration. During
implementation, the static region is implemented only once, with the first configuration used as
a placeholder, and the final placement and routing of the static region are preserved for all other
configurations. Logic implemented in the static region can use the routing resources (but not LUTs
or flip-flops) available in the PRRs but not vice versa. If a reconfigurable module were to use routing
resources in the static region, that would cause glitches during reconfiguration. Bus macros play
an important role here in interfacing the static region and PRRs as discussed in Section 2.2. The
tool automatically inserts them and designers have no control over their location.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:13

Finally, the tool generates a full reconfiguration bitstream (configuration file) as well as partial
bitstreams for each PRR, for each configuration. This results in full bitstreams for each configu-
ration and partial bitstreams corresponding to the Cartesian product of modules assigned to each
region. At runtime, the FPGA is initially configured using one of the full bitstreams and later any
single PRR can be reconfigured using a partial bitstream.

3.1.2 Xilinx Vivado PR Flow. From 7-series FPGAs onwards, Xilinx supports PR through the
Vivado Design Suite (Xilinx Inc. 2014). This flow is very similar to PlanAhead, but not yet fully in-
tegrated with the Graphical User Interface (GUI)-based project flow. The designs are implemented
using the Vivado Tcl based command flow or using a combination of Tcl commands and the GUI.

The first step is again to synthesise the static and reconfigurable modules separately using Xil-
inx tools or third-party synthesis tools. A reconfiguration controller (ICAP controller) should be
included in the design if the target FPGA is not a hybrid device such as Zynq SoC. For SoC de-
vices, instantiating the ICAP is optional since PR is supported through the PCAP interface in the
processor system. Floorplanning restrictions are the same as for PlanAhead, but the 7-series FP-
GAs enforce an additional restriction that partition boundaries should not cross interconnect tiles.
Interconnect tiles are special resources that manage routing between different resource columns.
One major improvement in Vivado is in the implementation of anchor logic. Unlike previous tools,
Vivado does not use LUT-based bus macros but rather directly uses interconnect tiles, which are
dedicated routing resources (Xilinx Inc. 2017c). This helps improve routing efficiency and thus
timing performance, but makes runtime bitstream relocation even more difficult.

Since the Xilinx flows allow static region wires to pass through PRRs, any minor modification
of the static logic requires complete reimplementation of the static region and all PRRs. Using
routing resources in the PRRs can also cause routing congestion for subsequent configuration
implementation. Meanwhile, restricting the static region from using PRR routing resources could
adversely affect overall system timing performance.

3.1.3 Altera PR Flow. The Altera PR flow is supported through Quartus-II and the newer Quar-
tus Prime design software (Altera 2013b, 2016b). This flow is similar to the PlanAhead flow with
different nomenclature. Altera refers to configuration frames as programming frames and calls con-
figurations revisions. Module variations implemented in the same PR region are called personas.

Altera partial reconfiguration is based on the revision feature in the Quartus software. The initial
revision is the base revision, where the boundaries of the static region and PRRs are defined. From
the base revision, multiple revisions can be created. The PRR boundaries are fixed using LogicLock

assignments in Quartus. LUT-based anchor logic is automatically inserted by the tool to fix the
routing between the static and PR regions. Later, the incremental compilation flow technique is
used to preserve the static region across different revisions. Unlike the Xilinx tool flow, Quartus
creates a full configuration file only for the base revision, with only partial configuration files cor-
responding to each PRR generated for other revisions. Hence, the FPGA can be initially configured
only in the base revision.

Altera FPGAs have a set of restrictions when the height of the region is less than the full FPGA
as discussed in Section 2.2. There are further restrictions when using LUTs in the PRRs to build
memory elements (called LUT-RAMs). LUT-RAMs inside PRRs cannot have an initialisation value
when used in AND/OR configuration mode. When AND/OR mode is used for designs without
initialised LUT-RAMs, a logic 1 has to be written to all memory locations before reconfiguring the
region. Otherwise, it causes a configuration error (Altera 2016b). Altera also allows static routing
through PRRs , so any modification to the static region requires complete reimplementation of the
static as well as all reconfigurable modules.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:14 K. Vipin and S. A. Fahmy

3.1.4 Partial Reconfiguration Support in Vendor OpenCL Software Tool-Chains. Newer FPGA
platforms from Intel and Xilinx support implementation of higher level designs using OpenCL
through their SDAccel and FPGA SDK for OpenCL tools (Intel 2017b; Xilinx Inc. 2017a). Xilinx uses
PR as a way of implementing OpenCL kernels in the FPGA. The kernels use a predefined interface
for data communication, such as AXI4. The compiler compiles these kernels for implementation
on a pre-partitioned, pre-floorplanned FPGA. At runtime, the kernels are loaded by programming
the FPGA over the PCIe interface (which is in the static region). The advantage of these tool flows
are that they abstract the integration of user-designed accelerators with the host system. A single
PRR is used for kernel implementation, removing the complexity of floorplanning multiple PRRs.
However, this restricts the granularity to a single monolithic “mode” for the system, limiting the
benefits of using PR in an adaptive system.

3.2 Academic PR Development Tools

In this section, we discuss some academic tools developed to support PR. Most of these tools tar-
get Xilinx FPGAs and many use vendor tools for low-level device dependent operations such as
placement, routing, and configuration file generation.

3.2.1 OpenPR Tool Flow. OpenPR is functionally close to the Xilinx PR design flow (Sohangh-
purwala et al. 2011). It relies upon the logic and wiring database and bitstream manipulation ca-
pabilities provided by an open-source FPGA development tool called Torc (Steiner et al. 2011). The
designer initially creates an XML project file, specifying the design name, static design file system
path, path to the constraints file (UCF), target device name, and so on. The Xilinx PlanAhead tool
is then used to manually floorplan the reconfigurable regions. OpenPR then generates the static
design by generating placement constraints, generating blocker routes to prevent the static region
from using routing resources in the PR regions, and merges the blockers with the static design.
Later, the clock tree routing information from the static design is inserted into the reconfigurable
modules. This is done by manipulating the intermediate files generated by the Xilinx implemen-
tation tools. Finally, the partial bitstreams are generated with the help of the Xilinx bitstream
generation tools.

The major attraction of OpenPR is its availability as an open source development environment.
Since it blocks the static region from using routing resources in the PRRs, it allows them to be
implemented separately, with changes in the static region not necessitating reimplementation of
all PR modules.

3.2.2 GoAhead Tool Flow. GoAhead (Beckhoff et al. 2012) also attempts to overcome some of
the limitations of the Xilinx incremental PR design flow. It also prevents routing resources in PRRs
from being used by the static region, with the aim of supporting module relocation between PRRs.

The overall GoAhead tool flow is shown in Figure 7(a). The static and reconfigurable modules
are implemented through independent design flows. The designer makes an initial plan defining
the static parts of the design and the modules that will be reconfigured. Then, the design is man-
ually floorplanned using a GUI tool and bounding boxes are drawn around PR regions. GoAhead
implements the static portion of the design, while masking the PR regions with blocker macros that
occupy all wires inside the PR regions, thereby preventing static nets from crossing PR regions. The
reconfigurable modules are implemented in a similar fashion, where the blocker macros prevent
wires crossing from PR regions into the static region. Finally, vendor tools are used to generate
partial and full bitstreams from the routed design.

The primary difference between GoAhead and OpenPR is that GoAhead uses blocker macros

to control clock signals in the PR regions and uses vendor tools to generate the final clock
tree. In OpenPR, the tool adds the clock tree routing without using vendor tools. OpenPR and

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:15

Fig. 7. (a) GoAhead PR tool flow (Beckhoff et al. 2012). (b) CoPR for Zynq tool flow showing steps performed

by the user, vendor tools, and the CoPR framework.

GoAhead can help overcome some of the limitations of the vendor flows, but do not address
the high-level/abstract design issues, and hence, require FPGA design expertise. GoAhead has re-
cently been supplemented with a feature for automatic floorplanning (Beckhoff et al. 2013). Both
these tools manipulate Xilinx Design Language (XDL) files to manipulate the placement of blocker
macros. Dependence on XDL is a problem as it has been discontinued in the Vivado design flow.

3.2.3 CoPR Tool Flow. CoPR is an automated PR toolflow specifically targeting the Zynq archi-
tecture (Vipin and Fahmy 2015), focused on raising the abstraction level for describing partially
reconfigurable applications. Many of the manual operations required in the vendor flow are au-
tomated, and low-level FPGA architecture dependent details are abstracted from the designer. It
also abstracts the runtime management of the reconfiguration process so that the system designer
need not be aware of the details of the hardware PR implementation. The overall flow is shown in
Figure 7(b).

The primary designer inputs to CoPR are the configuration and adaptation specifications. The
configuration specification details the different valid system configurations and the corresponding
library modules present in each configuration in XML format. The adaptation specification contains
software code for changing configurations at runtime. Neither of these references any low-level
PR features, making CoPR accessible to non-experts.

CoPR first uses the vendor synthesis tool (XST) to synthesise all modules for the target FPGA
to determine resource requirements. The partitioning step involves determining the number of re-
configurable regions (PRRs) and allocating modules to them. Later, a kernel tessellation approach
is used to generate a floorplan, resulting in a user constraints file (UCF) that specifies the coordi-
nates of all PRRs. The PR design is then integrated with the ARM processor system in the Zynq
with the help of Xilinx XPS software. The low-level implementation and bitstream generation op-
erations are performed using the Xilinx command line tools. The software for managing low-level
reconfiguration operations is automatically generated by the tool in C programming language, and
later integrated with the high-level adaptation specification using the Xilinx SDK tool-chain. The
ARM processor runs Xilinx’s Standalone operating system and manages reconfiguration through
a custom reconfiguration controller and an associated driver. The CoPR tool flow integrates with
Xilinx ISE, XPS, and SDK tools for backend implementation, but is not supported with Vivado.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:16 K. Vipin and S. A. Fahmy

3.2.4 PaRAT Tool Flow. The Partial Reconfiguration Amenability Test (PaRAT) flow (Kumar
and Gordon-Ross 2015) attempts to bridge between high-level synthesis (HLS) descriptions and PR
implementation. The tool initially analyses Xilinx Vivado HLS code and extracts control and data
dependency information to generate a high-level model of the PR system using its PR modelling
language (PRML) (Kumar and Gordon-Ross 2013). This is a directed acyclic graph representation of
the system, where nodes model algorithmic constructs and control while edges model control and
data dependency behaviour. The graphs are automatically partitioned to determine the number of
PRRs needed and the module assignment to them in the form of an XML file. This information can
be then used with the Vivado PR toolflow to implement the complete system.

3.2.5 OSSS+R Framework. OSSS+R is a SystemC-based design methodology enabling algorith-
mic specification in C/C++, functional simulation, and automated synthesis (Schallenberg et al.
2009, 2010). The approach uses object-oriented techniques as an abstraction mechanism for PR.
Reconfigurable components are modelled as polymorphic objects. A group of objects where each
member is rarely accessed at the same time as other members of the same group is considered
a good candidate for reconfiguration. The designer identifies potential candidates for dynamic
reconfiguration, marks them, and observes the effects of combining them in a PRR through sim-
ulation. Reconfiguration and context switch times are supported through annotations provided
by the designer. Once satisfied with the simulation, the model can be fed into the Fossy synthesis
tool to generate VHDL for the PRRs. The designer is still required to create wrapper modules for
each PRR and floorplan the system manually. The output RTL code is then processed through the
vendor PR implementation tools to place and route and create the final bitstreams.

3.2.6 Other PR Supporting Frameworks. There have been other models, tools, and methodolo-
gies focused on specific aspects of PR system design. (Harkin et al. 2004; Luk et al. 1996). Many of
these have not been publicly released, or rely on hypothetical architectures, and hence have not
gained widespread adoption.

Researchers have proposed the use of general purpose modelling languages such as Unified
Modeling Language (UML) for high-level specification of PR systems (Fuente et al. 2015). In this
work, RTL specifications of hardware modules, testbenches, and implementation constraints (such
as floorplanning constraints) can be directly interfaced with the model. It allows better design
space exploration, and supports the choice of an optimal partitioning of PR modules. However,
the wrapping of modules in each partition, and floorplanning must still be done manually. Similar
to CoPR, this modelling supports easy integration of the PR infrastructure with a processor for
runtime management of the system.

The Caronte methodology (Donato et al. 2007) takes a fixed task-graph as input and determines
how to allocate tasks to the regions specified by the designer in order to complete execution of the
application with dynamic loading of tasks. The designer is assumed to have determined how many
regions to use and to have floorplanned them. Runtime management is done using an embedded
processor.

The GePaRD flow (Boden et al. 2008) tries to enhance the Xilinx PR flow with a high-level syn-
thesis framework. The flow uses a high-level specification of the PR system as input and generates
both a system model for simulation and a physically-aware architecture description as input for
implementation on the target device using the Xilinx PR design flow. The design flow includes tem-
plate abstraction, high-level synthesis, and temporal modularisation. The authors do not specify
how the output of the proposed framework can be integrated with the vendor toolflow to imple-
ment real systems. It targets a virtual architecture that adapts to the reconfiguration mechanisms
of a dedicated target device, but this mapping is not explained.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:17

Fig. 8. (a) Altera Arria-10 PR control block (Intel 2017a); (b) Altera PR simulation through spatial multiplexing

of different personas; (c) Xilinx ICAP controller.

The design framework in Fahmy et al. (2009) defines an adaptive system with two planes. The
data plane implements the data processing, such as the signal processing in a radio, and can be
composed using a high-level tool that stitches together blocks from an IP library. The control plane
implements the management and control functionalities in software. The control plane reconfig-
ures the data plane as needed, from software code written by an adaptive system designer. This
framework only supports a single reconfigurable region and suffers from moderate data through-
put due to the low-bandwidth interface between software and hardware.

In Navas et al. (2013), the authors suggest a design approach where an IP block integrates a
reconfigurable partition along with the required communication and reconfiguration infrastruc-
ture. Using predefined communication interfaces enables PR regions to host any module whose
resource requirements are satisfied. This idea is very similar to the Erlangen Slot Machine with
the additional suggestion of a unified software and reconfiguration interface to simplify design.

3.3 PR Simulation

Simulating PR systems is challenging. All vendor-supported simulators are capable of functional
and timing verification of the designs for a particular configuration (in Xilinx terminology) or
revision (in Altera terminology). But simulating the reconfiguration operation itself is not possi-
ble, as this is a low-level device operation. Workarounds have been suggested by the vendors to
overcome this. One approach is to create a system that contains all the required modules and sim-
ulate different configurations by selecting between them. However, this does not offer an accurate
representation of the reconfiguration process.

3.3.1 Vendor PR Simulation Support. Among the vendors, Altera has better PR simulation sup-
port. The simulation model of the hardware primitive (PR-IP) that loads configurations into the
FPGA is shown in Figure 8(a). Each configuration file embeds a unique 32-bit identifier that is
used to indicate the loaded bitstream on the sim_pr_id port during simulation, while sim_state in-
dicated whether the operation has completed. The designer creates wrappers for each PR region
by multiplexing different modules (personas) implemented in that region as shown in Figure 8(b).
The sim_state and sim_pr_id outputs from the PR-IP primitive control these multiplexers. During
simulation, a configuration file is injected into the PR-IP and while configuration is occuring, the
testbench sets all outputs from the PRR into an unknown state. When configuration is complete,
the multiplexer control signals are driven by the testbench based on the sim_pr_id, which selects
one of the modules specified by the id number.

The hard-macro in traditional Xilinx FPGAs that serves the purpose of writing to the configura-
tion memory is the ICAP. It is possible to send actual configuration files into the ICAP simulation
model and obtain configuration status, but this does not simulate actual module switching. The

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:18 K. Vipin and S. A. Fahmy

Xilinx tools do not offer further support, though it is possible to multiplex modules assigned to
the same region, as in the Altera flow; but this must all be managed manually.

3.3.2 Academic PR Simulation Efforts. There has been some limited work in the academic com-
munity on simulating PR systems. Since PR is closely associated with the targeted FPGA architec-
ture, fully modelling it requires modelling of low-level architectural details, which would be too
slow. Another issue is with using the real configuration files for simulation. Configuration files are
generated as the final development step but functional simulation must be completed before they
are generated. The earlier multiplexing approach was proposed in Luk et al. (1997). An improved
technique called dynamic circuit switching (DCS) was presented in Lysaght and Stockwood (1996).
In that work, a reconfiguration scheduler oversees the PR operation. The tool automatically in-
serts multiplexers at the outputs of mutually exclusive modules by modifying synthesised netlists.
Isolation logic is also inserted, which simulates the behaviour or signals from a PR region as it un-
dergoes reconfiguration. During simulation, the reconfiguration scheduler monitors signals from
the modules and activates the required multiplexer controls to simulate the PR operation.

In the above-mentioned approaches, the process of configuration files being transferred from
external memory never undergoes functional simulation. The isolation logic, which is inserted
between PRRs and the static region to isolate glitches between them during PR operation is also
not simulated. A more comprehensive approach is the ReSim library (Gong and Diessel 2011),
which proposes a simulation-only model of the reconfiguration controller (ICAP for Xilinx FPGAs)
and simulation-only configuration file (SIMB). Like Altera’s work, the SIMB file contains a unique
identifier, which indicates the circuit being reconfigured. The framework automatically inserts
multiplexers and controls them at runtime based on the outputs of the reconfiguration controller. It
is also possible to inject errors during reconfiguration to analyse system behaviour. The framework
is written in SystemVerilog, which makes it highly portable across different simulators.

3.4 Summary

Table 2 summarises the features supported by the different PR development and implementation
tools. It is clear that research has sought to address a range of challenges in PR system design; how-
ever, there is no complete framework or toolflow that addresses the high-level design of PR systems
abstracted away from low-level details, and that can be mapped onto real commercial architectures.
In Section 5, we discuss some of the approaches taken to manage the PR process, some of which
interact with specific tools in this section. The dependency of academic tools on vendor-specific
data files remains a challenge as the tools become obsolete as vendors stop supporting those files.
Most research work has focused on Xilinx FPGAs to date, though we expect Altera’s recent sup-
port of PR to provide further opportunities. From the discussion in the previous two sections, it is
clear that advances in both FPGA architecture as well as design methodologies/modelling are key
to increasing design productivity for PR-based systems.

4 OVERHEAD REDUCTION TECHNIQUES

The two major overheads associated with PR are resource wastage and reconfiguration time. FPGA
resources are wasted, especially in vendor supported tool-flows, due to the constraints on the shape
and location of PR regions. Reconfiguration time overhead corresponds to the time required to pro-
gram the FPGA with one or more partial configuration files. Unlike multi-context FPGAs where
reconfiguration can happen as fast as in a single clock cycle, modern FPGAs take several millisec-
onds or even seconds depending on the configuration interface, the size of the bitstreams, and
how these are stored and transferred (Xilinx Inc. 2017c). A detailed analysis of factors influencing
reconfiguration time and a corresponding cost model is presented in Papadimitriou et al. (2011).

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:19

Table 2. Comparison of Features Supported by Different PR Tools

Tool H
ig

h
-l

ev
el

sp
ec

.

P
ar

ti
ti

o
n

in
g

F
lo

o
rp

la
n

n
in

g

P
h

y
si

ca
l
im

p
l.

C
ir

cu
it

re
lo

ca
ti

o
n

R
u

n
ti

m
e

m
gm

t.

Xilinx PlanAhead � � � � � �
Xilinx Vivado � � � � � �
Altera Quartus � � � � � �
Xilinx SDAccel � � N/A � N/A �
Altera OpenCL � � N/A � N/A �
OpenPR � � � � � �
CoPR � � � � � �
GoAhead � � � � � �
Caronte � � � � � �
GePaRD � � � � � �
PaRAT � � � � � �
OSSS+R � � � � � �

�: Operation is fully manual or not supported. �: Partial automation or support provided by the tool. Designer input is
required to complete the step, �: The step is fully automated by the tool requiring no designer intervention.

A major factor restricting the use of PR in online hardware adaptive systems is the runtime of the
vendor implementation tools. It may take hours or even days to implement a PR system from syn-
thesis through implementation and configuration generation for the static region and all PRRs. In
addition, the need to generate multiple configuration files per module for each different possible
region compounds this issue in vendor flows. In this section, we review techniques proposed for
reducing these overheads.

4.1 Partitioning

Determining the number of PRRs to use in a design and how to allocate specific modules to them
constitutes the design partitioning phase. Choices made during partitioning can significantly im-
pact both resource usage and reconfiguration time. In vendor PR design flows, the designer must
manually determine the number of PRRs and corresponding module allocation to them and hence
the granularity of reconfiguration. A fundamental approach is that modules that are mutually ex-
clusive during system execution can be implemented in the same PRR since only one of them needs
to be active at any given time. Conversely, it must be possible to simultaneously configure modules
that need to be executed concurrently. It is to be noted whenever a module is reconfigured, the
entire region to which it is assigned must be reconfigured. Hence, while combining modules into
fewer regions can allow the tools to optimize resource usage, it is clear that reconfiguration time
can increase dramatically as illustrated in Figure 9. Furthermore, having more modules in a region
means that region is likely to be configured more often.

Much of the work on automated partitioning tries to schedule a graph of dependent tasks
onto a fixed number of regions, minimising runtime (Ayadi et al. 2014; Charitopoulos et al. 2015;
Purgato et al. 2016). They assume that multiple FPGA regions are used similar to a multi-processor
system with each region processing an independent task. Such assumptions completely ignore the

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:20 K. Vipin and S. A. Fahmy

Fig. 9. When assigning modules to separate regions, if some combinations (configurations in Xilinx termi-

nology or revisions in Altera terminology) do not exist, combining modules into a single region can save area.

But when modules are reconfigured, the entire region to which they are assigned has to be reconfigured. For

example, changing from conf 2 to conf 3 when using two regions requires reconfiguring a small region (R1),

but using a single region requires reconfiguring a much larger area.

communication between PR regions, which simplifies implementation but with limited practical
applications. The work in Ganesan and Vemuri (2000) describes a reconfigurable processor system
with two reconfigurable regions for execution speed up, achieved by overlapping the task execu-
tion in one region with the reconfiguration of the other. The task graph is partitioned in such a way
that reconfiguration and execution can be carried out concurrently without mutual dependency.

In Rana et al. (2009), the authors present a method for minimising reconfiguration time based
on analysing communication graphs. The algorithm tries to group modules, which require simul-
taneous reconfiguration into the same PRR. However, the number of PRRs must be determined by
the designer. In Jara-Berrocal and Gordon-Ross (2009), the authors assume the number of recon-
figurable regions is fixed and resources are considered to be homogeneous. The number and size
of the regions must be determined by the designer. Simulated annealing is used to assign hardware
modules to the regions while minimising reconfiguration time. The number of modules required
to execute a task is assumed to be equal to the number of regions, and if any region is unoccu-
pied, an empty module is assigned to it. Modern FPGAs have a heterogeneous architecture with
distributed DSP and memory blocks, which breaks the homogeneous resource assumption.

The work in Montone et al. (2010) explores partitioning in more detail. The authors describe a
simulated annealing-based algorithm for determining the allocation of modules to regions based
on minimisation of area variance at different time instances. This work considers the latest FPGA
architectures as well as PR requirements. However, it also makes use of fixed task graphs for
the optimisation. Furthermore, the impact on reconfiguration time is not accounted for in their
method.

In Vipin and Fahmy (2011), the authors use integer linear programming (ILP) to find the optimal
number of PRRs and corresponding module allocation to them. The formulation can be tuned
to either minimise reconfiguration time or resource utilisation. Although it provides an optimal
solution, as the number of modules to be allocated increases, runtime and complexity becomes
excessive. A heuristic algorithm based on connectivity graphs, where modules with the highest
probability of concurrent execution are grouped into the same PRRs, was presented in Vipin and
Fahmy (2013).

4.2 Floorplanning

Floorplanning involves physical partitioning of the FPGA fabric for the optimal placement of PRRs
in order to improve routability, timing, or density. For standard non-PR based FPGA designs, floor-
planning is generally of less interest and is only used by expert designers to achieve high area

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:21

optimisation or timing performance. For static FPGA designs, vendor tools perform timing driven
placement and routing, while fitting the design within the available resources. Further manual
tweaking can help improve performance to meet particularly stringent timing constraints.

Vendor PR tools do not support automatic floorplanning and require manual input from the de-
signer. This requires the designer to have knowledge about low-level physical architecture as well
as the runtime costs associated with PR. Manual floorplanning based on these factors consumes
a large amount of design time and is cumbersome, often leading to sub-optimal results. This has
contributed to making PR less attractive to system designers, since most FPGA designers never
deal with floorplans for static designs. An intelligent arrangement and allocation of PR regions
can result in reduced area and hence allow designs to fit on smaller devices. It is also important to
note that the implementation tools cannot perform logic optimisation across PRR boundaries, and
hence their locations are important in achieving timing closure.

Although a number of approaches to FPGA floorplanning have been published, work related
to floorplanning for PR is less abundant. Traditionally, FPGA floorplanning is considered as a
fixed-outline floorplanning problem, as introduced in Adya and Markov (2001) and further ex-
tended in Feng and Mehta (2006). The authors present a resource-aware fixed-outline simulated-
annealing and constrained floorplanning technique, but the resulting floorplans may contain ir-
regular shapes, which are not allowed in supported PR flows. A study in Yuan et al. (2005) presents
an algorithm called “Less Flexible First (LFF).” In order to perform placement, the authors define
the flexibility of the placement space as in a cost function, and a greedy algorithm is used to place
modules. The generated floorplan has only rectangular shapes, but the approach is unsuitable for
recent FPGAs due to their heterogeneous resource layout.

The approach in Banerjee et al. (2011) is based on slicing trees and can ensure that a floorplan
contains only rectangular shapes. Here, the authors assume that the entire FPGA fabric is com-
posed of a repeating basic tile, which contains all types of Xilinx FPGA resources including CLBs,
Block RAMs, and DSP slices. Again, this assumption does not hold for modern FPGAs.

In Montone et al. (2010), the authors present a reconfiguration-aware “floorplacer.” Their algo-
rithm is based on the more recent Virtex-5 FPGA architecture. The algorithm initially divides a
design into reconfiguration regions based on the minimisation of temporal variance of resource re-
quirements. The floorplacer tries to minimise area slack using simulated-annealing. In Singhal and
Bozorgzadeh (2007), a floorplanning method based on sequence pairs is presented. In this work,
the authors showed how sequence pairs can be used to represent multiple designs together. An
objective function tries to maximise the common areas between designs and simulated-annealing
is used for optimisation.

In Vipin and Fahmy (2012a), a greedy algorithm called columnar kernel tessellation was pre-
sented. This technique defines kernels, which are basic units for floorplanning composed of differ-
ent resource tiles discussed in Section 2.2. Kernels containing different resources types (CLB, CLB-
DSP, CLB-BRAM, etc.) are predefined and stored in a library for different FPGA families. These
kernels are replicated vertically to create the required PRRs. This works since the Xilinx FPGA
architecture is uniform in the vertical direction. However, with a greedy algorithm, the quality of
the final floorplan depends upon the initial placements of PRRs.

More recently, an optimal floorplanner based on mixed-integer linear programming (MILP) was
proposed to solve the PR floorplanning problem (Rabozzi et al. 2014). Although this technique can
provide improved results, a solution takes several hours for reasonably sized problems and the
search space increases exponentially with the number of regions. The authors propose that the
designer provide an initial solution, which can then be refined using heuristics.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:22 K. Vipin and S. A. Fahmy

4.3 Runtime Placement and Configuration File Manipulations

Researchers have tried to overcome long PR tool chain runtime by enabling runtime placement and
routing and bitstream manipulation techniques to make the implemented logic relocatable. Practi-
cally, these techniques have had limited success due to the heterogeneous architecture of modern
FPGAs and limited processing power of embedded processors, which are generally employed for
these online manipulations.

The work in Bazargan et al. (2000) considered online relocation as an on-line bin-packing prob-
lem. Later, Lu et al. (2008) introduced an algorithm for online task placement. Both these ap-
proaches assume FPGAs to have a homogeneous architecture, allowing modules to be freely placed
in any location. Practically this is not true and connectivity between the modules must somehow
be preserved while relocating them. Due to the complex routing architecture of FPGAs, this is
infeasible.

Another method for online placement and removal of modules on Virtex-II FPGAs was pre-
sented in Raaijmakers and Wong (2007). The approach performs the necessary routing to discon-
nect and connect modules to others already present in the fabric. Before assigning a new module
to a region, the interface of the previous module is unrouted to prevent any damage. However, this
work only considered designs exclusively using CLBs.

In Koester et al. (2009), a method is proposed for increasing the placeability of reconfigurable
modules. The authors consider regions consisting of reconfigurable tiles, supporting heteroge-
neous resources such as BRAMs and DSP blocks. The algorithm defines the set of feasible positions
for PR modules and optimises the regions to minimise the degree of overlap with other regions.
Another method for improving placeability is described in Becker et al. (2007), targeting Virtex-4
FPGAs. The technique utilises a compatible subset of resources in non-identical regions, making
it possible to place modules in non-identical regions.

Several tools have been developed for online module placement targeting different FPGAs. PAR-
BIT (PARtial BItfile Transformer) was a widely used tool targeting Virtex-E FPGAs (Horta and
Lockwood 2001). Modules could be relocated by manipulating the contents of a partial configura-
tion file. To generate a new placement, PARBIT read the configuration frames from the original
file and copied to the new file only the configuration bits related to the new area. It then generated
new values for the configuration address registers. REPLICA (RElocation Per onLIne Configuration
Alteration) (Kalte et al. 2005) was another tool targeting Virtex-E FPGAs. It was implemented on
the FPGA itself and performed address manipulation for relocation at runtime. Replica2Pro (Kalte
and Porrmann 2006) was an advanced version supporting Virtex-II and Virtex-II Pro FPGAs. It also
supported relocation of BRAMs and multiplier blocks.

The major disadvantage of online place-and-route tools is their lack of portability. Due to ar-
chitectural variations, the tools must be modified for each device, even for different FPGAs in the
same device family. The released low-level details of configuration frame contents available from
Xilinx has also considerably decreased since the Virtex-5, meaning significant reverse engineering
would be required. Even for earlier FPGAs, researchers used trial and error to find the detailed
mapping of individual configuration bits. Hence, most of these tools support very few FPGAs be-
longing to the same family. Support tools such as JBits (Guccione et al. 2004), which provided JAVA
based APIs for bitstream manipulations, are no longer endorsed by Xilinx. When relocating mod-
ules, it is difficult to ensure the communication infrastructure remains intact. Vendor tools do not
directly support explicit positioning of the bus macros used to fix the communication between PR
and static regions, so even two PRRs with identical sizes and resources may have different routing
to the static region depending on their relative positions. Academic tools such as GoAhead can be
helpful in this regard.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:23

Another possible way to support runtime relocation is to consider it as a requirement at design
time. If multiple regions with the exact same shape and resources are identified at design time,
runtime relocation involves only manipulating the frame address fields in the partial bitstreams.
In Backasch et al. (2014), an algorithm to identify multiple identical regions in an FPGA with a given
mix of resource requirements is proposed. The ILP-based floorplanner discussed in Section 4.2
(Rabozzi et al. 2014) was later extended to provide similar support (Rabozzi et al. 2015). Here, the
floorplanner reserves multiple PRRs for the same set of PR modules grouped as a single partition.

4.4 Configuration File Compression

Configuration file (bitstream) compression is a widely used technique for reducing reconfiguration
time. In Pan et al. (2004), the authors exploit redundancies both within a configuration bitstream
as well as bitstreams of different configurations. Their analysis shows that frames configuring
CLBs have a high degree of mutual similarity. Huffman encoding is also used to compress the
bitstreams. Hauck et al. (1998) and Hauck et al. (1999) present an algorithm to compress bitstreams
for Xilinx XC6200 FPGAs, reducing configuration time by a factor of four. The algorithm generates
a new configuration file from the original, with fewer configuration writes by using the wildcard

registers present in FPGAs. These enable configuration of multiple frames with a single write by
only modifying the frame addresses. Li and Hauck (2001) and Haiyun and Shurong (2008) present
algorithms for bitstream compression for Virtex FPGAs using different compression techniques
such as Huffman coding, Arithmetic coding, and LZ coding, among others.

Bitstream compression is useful in reducing configuration time when bitstream transfer time
from external memory to the FPGA is considerably higher than the time taken to send the bit-
stream to the configuration memory. Otherwise, since the compressed bitstream must be decom-
pressed before final reconfiguration, the effective reconfiguration time may increase. Presently,
bitstreams are typically stored in high-speed external memory such as DRAM, which offers higher
throughput than the maximum reconfiguration throughput (400MB/s), and hence, bitstream com-
pression has limited practical application. A better solution for this problem is to increase the
speed at which data is written to the configuration memory. It is worth noting that FPGA vendors
support custom bitstream compression techniques, which do not require separate decompression
before reconfiguration (Xilinx Inc. 2017b). For example, Xilinx tools use a special register in the
ICAP called the multiple frame write register (MFWR) to configure repeating frame data in the
bitstream to different configuration memory locations. To enable this, a special flag is set during
bitstream generation.

A compression technique specifically targeting runtime module relocation is presented in
Beckhoff et al. (2014). Recall that circuits targeted for different PRRs with the same shape and
resources may vary only in frame addresses (see Section 4.3). In this case, for each module, only
the bitstream targeted for the first PRR is stored in external memory in an uncompressed format.
Bitstreams targeted for other PRRs contain only the difference data with reference to the refer-
ence bitstream, and a special reference command indicates where the data is the same. At runtime,
the configuration controller analyses the bitstream and fetches the configuration data accordingly.
This is beneficial when bitstreams are stored in slow external memory such as flash memories.

4.5 High-Speed Reconfiguration Controllers

One way to reduce reconfiguration time is to improve the speed of reconfiguration itself. Most
efforts in this direction have targeted Xilinx FPGAs. The hard-macro in traditional Xilinx FP-
GAs that serves the purpose of writing to the configuration memory is the ICAP as depicted in
Figure 8(c). The ICAP works the same way as the SelectMAP external configuration interface but
has separate read/write buses (Xilinx Inc. 2011b). The ICAP data interface can be set to one of three

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:24 K. Vipin and S. A. Fahmy

data widths: 8, 16, or 32 bits. The maximum recommended frequency of operation for the ICAP is
100MHz.

The low-level hardware module, which is responsible for delivering bitstreams to the ICAP
macro in the required format, is called a reconfiguration controller. Maximising ICAP throughput
has a significant effect on minimising configuration time. Traditionally, the reconfiguration op-
eration is controlled by a processor through a vendor-provided reconfiguration controller such
as the OPBHWICAP or XPSHWICAP, connected as a slave device to the processor bus (Xilinx
Inc. 2006, 2010). Using these vendor-provided controllers gives low throughput in the region of
4.6-10.1MB/s (Claus et al. 2007a; Liu et al. 2009a). The ICAP hard macro itself, however, supports
speeds of up to 400MB/s (32bits at 100MHz).

In Gohringer et al. (2010), the authors propose connecting the ICAP controller to the fast sim-
plex link (FSL) bus of a Microblaze soft processor. The drawback is that the processor becomes
consumed with the task of requesting configuration data from external memory and sending it
over the FSL bus. The resulting throughput of under 30MB/s remains well below the theoretical
limit of the ICAP.

Using DMA to transfer partial bitstreams from external memory to ICAP has been shown to be
effective in increasing throughput (Liu et al. 2009b; Vipin and Fahmy 2012b, 2014b). Elsewhere,
some have tried to achieve better performance by over-clocking the ICAP primitive (Hansen et al.
2011). Since the maximum frequency at which the controller can operate depends upon manu-
facturing variability and specific placement and routing, this would need to be determined on a
device-by-device basis, which is cumbersome.

Some work on optimised ICAP controllers has often made unrealistic assumptions, such as the
complete configuration bitstream being stored in FPGA Block RAMs (Liu et al. 2009a). This is not
practical, as FPGAs have limited memory that is often insufficient for even a small number of bit-
streams, and these memories are often required for system implementation. Researchers have also
proposed directly streaming partial bitstreams from a host computer through high-speed commu-
nication channels such as PCIe (Vipin and Fahmy 2014a). This technique is capable of achieving
near-theoretical maximum performance and practically unlimited memory for storing partial bit-
streams, since they are not stored in limited on-board memory. The drawback is dedicating a PCIe
controller for just reconfiguration if the system has no other need for it, or eating into valuable
PCIe bandwidth if it is used for data transfer aside from PR.

Currently, the only custom reconfiguration controller for Altera (Stratix V) FPGAs is discussed
in Xiao et al. (2016). This controller also contains the logic for decompressing a pre-compressed
bitstream, which further helps to improve reconfiguration throughput.

Table 3 summarises the resource consumption and performance of different proposed reconfig-
uration controllers. In all cases, the maximum theoretical reconfiguration speed is 400MB/s except
for Xiao et al. (2016) where it is 200MB/s.

4.6 Summary

Partitioning and floorplanning for PR remain open to further research. Most existing work does not
perform partitioning in a manner that considers the runtime aspects of PR and does not consider
the latest FPGA architectures. They generally assume a scheduled graph as the input where each
task independently executes in a region. This may not be true for systems where the order in which
module execution happens is known only at runtime. Similarly, automatic floorplanning has yet
to be fully tackled. The addition of new hardware macros such as hardened PCIe cores, Ethernet
controllers, and memory controllers, along with further restrictions on routing resources makes
this task more challenging on modern devices.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:25

Table 3. Performance Comparison of Configuration Controllers

Resource Utilisation Throughput

Implementation FFs LUTs BRAMs (MB/s)

(Liu et al. 2009a) 1,083 918 2 235.20

(Claus et al. 2008) NA NA NA 295.40

(Manet et al. 2008) NA NA NA 353.20

(Liu et al. 2009b) 367 336 0 392.74

Xilinx (PLB) (Xilinx Inc. 2010) 746 799 1 8.48

Xilinx (AXI) (Xilinx Inc. 2011a) 477 502 1 9.10

DyRACT (Vipin and Fahmy 2014a) 672 586 8 399.80

PCAP (Vipin and Fahmy 2014b) 0 0 0 128

Xilinx ICAP for Zynq(non-DMA) (Vipin and Fahmy 2014b) 443 296 0 19

Xilinx ICAP for Zynq(with DMA) (Vipin and Fahmy 2014b) 443 296 0 67

ZyCAP (Vipin and Fahmy 2014b) 806 620 0 382

(Xiao et al. 2016) 6,804 1,701 0 200

For lower-level architecture-dependent operations such as placement and module relocation, it
is more productive to use vendor-provided tools and find ways to minimise the impact of their
limitations. Otherwise, the device specificity of such work limits its appeal and longevity. From
Vivado 2016.1, Xilinx supports a hierarchical design flow for PR regions, using which, a PR module
can be placed and routed independent of the static region. The “stitching” between the PR regions
and the static region can be done at a later stage. Although this flow does not support module
relocation, this could be an initial step toward it.

The overhead reduction techniques discussed require further investigation for porting to newer
Xilinx and Altera (Intel) FPGAs. The relatively simpler architecture of Altera Stratix 10 and Arria
10 FPGAs may allow more effective automatic partitioning and floorplanning.

5 RUNTIME MANAGEMENT OF PR SYSTEMS

Another important aspect of PR-based systems is runtime management. This includes deciding
when reconfiguration should happen, which regions should be reconfigured, how reconfiguration
is achieved, and so on. This can be controlled entirely in software control, using a mix of software
and hardware, or entirely in hardware. The specific techniques used depend upon factors such as
required reconfiguration performance, the presence or absence of a processor in the overall system
design, and a priori knowledge of reconfiguration sequence.

The vendor toolflows expect the presence of a processor to manage the reconfiguration oper-
ation. They expect the software developer to be aware of the reconfiguration process, and only
provide a low-level driver API for the reconfiguration controller (such as ICAP, PCAP, etc.) (Xilinx
Inc. 2004b). These APIs are available in the standard header files of the Vendor software devel-
opment suites such as the DevC header files and associated API for Zynq SoCs). The software
responsible for runtime management (deciding when to reconfigure and how) should send the
corresponding partial bitstream data to the reconfiguration controller, usually one word at a time.
This process is not only inefficient, but also makes software development highly dependent on the
hardware details.

Both Xilinx and Altera offer low-level configuration controller macros (ICAP and PR-IP) that can
be interfaced with other hardware. This has allowed the development of custom reconfiguration
controllers as discussed in Section 4.5. These controllers can be hardware-only implementations
or with associated software drivers. These custom drivers provide one level of abstraction to the

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:26 K. Vipin and S. A. Fahmy

software developers, allowing them to specify the names of partial bitstreams required for recon-
figuration and not their physical memory addresses or sizes. However, the developer must still
know which bitstreams correspond to each region and the combination of region configurations
required to achieve a specific system functionality (configuration).

5.1 Management of Reconfigurable Tasks

In a large body of work, FPGAs are considered as general compute resources where hardware tasks

can be dynamically loaded and unloaded in a similar way to software tasks being scheduled on
a multi-processor system. A hardware task is a synthesized digital circuit that has been compiled
into a partial bitstream. Most early work in this area assumes FPGAs to be composed of several
homogeneous compute units, which can be seamlessly combined together to implement tasks of
varying compute complexity (Lu et al. 2009). This holds for coarse grained PR-supporting FPGAs
such as the Xilinx XC6200 and dynamic task scheduling has been successfully demonstrated on
them (Brebner 1996). However, modern fine grained FPGAs do not directly support relocation
of hardware due to their heterogeneous nature. Since tasks might have to be scheduled to run
in different locations on the FPGA fabric, bitstream relocation capability discussed in Section 4.3
becomes a primary requirement for such systems. Another more practical solution is to floorplan
the FPGA and generate bitstreams for all tasks at all possible PRRs and store them in a database.
The scheduler can then load the correct bitstream when a task is scheuled to a particular PRR
(Charitopoulos et al. 2015). This scheduling can be either online or offline and the scheduler can
abide by hard real-time requirements where present.

In Steiger et al. (2004) a different approach is taken. Here, all the PRRs extend the entire height of
the FPGA and have equal width. They are also arranged so they contain exactly the same number
and kind of resources and follow the same communication architecture. Each hardware task is
implemented using an integer multiple of these slots. Runtime bitstream manipulation is then
used to modify the addresses written to when a task is loaded. The online scheduler uses standard
scheduling algorithms such as first fit or best fit to schedule the task into available resource.

Configuration caching is another runtime management technique suggested for reducing re-
configuration time. The technique, described in Li et al. (2000), tries to minimise reconfiguration
time in the case of a task sequence that must be executed in a fixed number of PRRs. Simulated
annealing is used to determine the allocation that minimises reconfiguration time, leading to re-
ductions by a factor of five. Such techniques only apply in the case of using PR to switch tasks in
fixed-sequence applications. For dynamically adaptive systems, we do not know the transitions or
reconfiguration sequence up front.

5.2 Software/Processor-Based Runtime Management

In these systems, software running on a processor (either within the FPGA or in a host machine)
manages the reconfiguration operation. At the highest abstraction, the runtime reconfiguration
operation is completely transparent to the user. This is the technique used in OpenCL frame-
works where the software developer is completely unaware of the reconfiguration operation. At
the back-end, the software on the host system automatically loads a partial bitstream when a new
kernel is configured on the target FPGA. A similar approach is adopted in high-performance FPGA
platforms such as Maxeler Dataflow Engines (Ciobanu et al. 2013). Switching between configura-
tions is implemented using conditional statements in software and loading new hardware is done
through an API call. Similar methods that rely on the software designer knowing which bitstream
to load are the most prevalent in the literature.

The CoPR flow (Vipin and Fahmy 2015) discussed in Section 3.2.3 uses a two-layer architecture
for runtime system management. The control plane is implemented in software and refers only

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:27

to the set of valid configuration labels that are defined in the system specification. Information
about how configuration changes map to physical reconfigurations is automated and managed
by the configuration manager seamlessly. By simply passing the required configuration name to
the configuration manager through the API, whatever PR operations are necessary are carried
out automatically. This abstraction works well for adaptive systems where the designer is more
concerned about defining adaptive behaviour than the low-level details of how this is achieved.

There has been work on integrating runtime reconfiguration into operating systems (OSs). In
Santambrogio et al. (2008), GNU/Linux is extended to support runtime PR. A number of new sys-
tem calls, such as module_request and module_release, are implemented to enable the OS to manage
hardware modules similar to software processes. They also propose different caching and alloca-
tion policies to decide how a PR region should be handled once the allocated module finishes
execution and to map new module requests to available regions. For low-level reconfiguration
operations, dedicated device drivers are integrated with these system calls and user libraries. OS
support provides better software abstraction and code reuse but may cause significant overhead
due to the multiple software layers involved during reconfiguration.

In Reis and Fröhlich (2009), the authors target OS support for systems implementing difference-
based PR (discussed in Section 3.1.1). Here, the FPGA implements a soft processor (such as an MIPS
processor) and a number of IP cores. The IP cores are controlled by the software running on the
soft processor. The entire FPGA acts as a co-processor to the main processor running in the EPOS
framework (Fohlich and Wanner 2008). To change the co-processor, the difference-based partial
bitstream is sent to the FPGA and the corresponding IP core drivers are loaded. The reconfiguration
process is fast since the size of the partial bitstream is relatively small. The challenge is that such
reconfiguration changes the position of the soft-processor in the FPGA; hence, software status
is lost. To overcome this, before reconfiguration, the MIPS status is saved to the main processor
memory, and after reconfiguration, the software state is restored by sending this saved information
back to the FPGA. This system is an example of static partial reconfiguration, since the FPGA
cannot perform any processing during the reconfiguration operation.

A custom FPGA architecture and a custom OS supporting PR is presented in Wang and Jean
(2012). The OS has standard features such as a scheduler, placer, and deadlock detector. The pro-
posed FPGA architecture supports dynamic module placement and routing and appears similar to
an overlay on an existing FPGA architecture. In this case, the reconfiguration is more like a virtual

reconfiguration, which involves controlling MUXes for enabling dynamic routing. However, the
proposed system is not mapped to a real architecture.

Another popular operating system developed for PR is ReconOS (Agne et al. 2014), which offers
unified operating system services for functions executing in software and hardware and a stan-
dardized interface for integrating custom hardware accelerators. In ReconOS, the target application
is partitioned into threads, which can be either blocks of sequential software or parallel hardware
modules (hardware thread). Each hardware thread is a PR module currently configured in a PRR.
Threads can communicate and synchronize using one or more of the established OS techniques
such as message queues or mailboxes, barriers or semaphores, or through mutually exclusive locks
(mutexes). ReconOS thus extends a host operating system with support for hardware threads.

5.3 Custom Hardware-Based Runtime Management

In these systems, the reconfiguration control is completely implemented in hardware through
custom state-machines and reconfiguration controllers. Most controllers discussed in Section 4.5
follow this approach. The reconfiguration schedule is either pre-stored in internal memory or
dynamically decided by the state machines by observing the surroundings through sensors. The
main advantage of these systems are they can achieve high reconfiguration throughput since many

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:28 K. Vipin and S. A. Fahmy

of these controllers support DMA transfer of bitstreams from external memory to the configuration
interface. But they do not offer much flexibility as they generally use simple adaptation algorithms
due to the difficulty and resource requirements of implementing complex algorithms in hardware.
Hence, the more promising approach has been to interface these low-level hardware management
blocks for low-level reconfiguration management with higher layer software to abstract these
operations.

5.4 Summary

Further opportunities exist in the area of runtime abstraction for PR systems, including improved
abstraction at the application level and OS policies and mechanisms for improved efficiency of the
reconfiguration process. The OS frameworks suffer because they are so general, and the overheads
can be significant. A more application centric approach, such as being tied to the requirements of
adaptive systems, can allow a lean management approach that still retains a high level of abstrac-
tion. Presently, the research community is exploring how to manage the reconfiguration process in
the context of virtualised cloud accelerators, and this is likely to borrow some ideas from existing
OS approaches and integrate these with the specific aspects of general cloud frameworks.

6 APPLICATIONS OF PARTIAL RECONFIGURATION

Some applications fit the concept of partial reconfiguration well, while others benefit from im-
proved efficiency through the use of PR. A wide range of applications exploiting PR have been dis-
cussed in the literature. These can be classified based on the specific features of PR being exploited
such as adaptability, overhead reduction, reliability improvement, and hardware computing.

6.1 Dynamic System Adaptation

PR enables implementation of adaptive hardware systems that can modify their behaviour dynam-
ically at the hardware level to adapt to their surroundings (operating conditions). This is especially
important in applications where the high computational requirements exceed what software can
provide, but custom hardware would be too rigid. A popular application with such adaptability
is software defined radio (SDR) (Delahaye et al. 2007), where combining flexibility with hardware
performance makes PR attractive. Flexible implementations of specific radio blocks using PR, such
as adaptive filters, have also been demonstrated (Choi and Lee 2006; Pham et al. 2017). Cognitive
radios are more advanced SDRs that modify their own functionality at runtime in order to operate
more effectively in unknown environments (Delorme et al. 2008). Adaptation of the modulation
scheme, coding, filters, and other baseband features at runtime necessitates low-power hardware
implementations that are also flexible. PR allows these to be adapted individually rather than have
separate basebands. A generic development framework for implementing PR-based cognitive ra-
dios was presented in Lotze et al. (2009), where the cognitive radio is decomposed into two parts.
The static region comprises the control plane, integrating a processor running Linux, while the data
plane implements baseband components with high computational requirements in a PR region.
This two-layer architecture maps well to modern hybrid FPGAs like the Xilinx Zynq, the ARM
processor implements the control plane, and the FPGA fabric implements the baseband (Shreejith
et al. 2015). A multi-standard Orthogonal Frequency Division Multiplexing (OFDM) transceiver ar-
chitecture is presented in Pham et al. (2017), where a mix of PR modules and parametrised modules
is shown to offer a significant improvement in reconfiguration time compared to all-PR modules
in a single PRR or multiple PRRs.

Another example is applications with adaptive data clustering (K-means clustering, support
vector machines (SVMs), etc.) where kernels are selectively modified with multiple kernels hosted
in the same FPGA (Hussain et al. 2012, 2014). Concurrent implementation of multiple classifiers

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:29

improves overall system performance. PR allows individual classifiers to be adapted, overcoming
the need for a large number of multiplexed classifiers.

Researchers have shown the potential of PR in automotive applications, especially in driver as-
sistance systems (Claus et al. 2007b). Since vehicles have a very long life, and frequent upgrades
are not possible, and given the rapid development of approaches for driver assistance, PR on FP-
GAs offers the benefits of real-time video processing with the flexibility to upgrade in the future.
In Claus et al. (2007c), the authors present a system that uses a PowerPC processor for control
and management, with different image processing functional units implemented as co-processors,
loaded dynamically as needed.

A packet processing system called Field Programmable Port Extender (FPX) also uses PR
(Lockwood et al. 2001) to dynamically reprogram hardware modules and route individual traf-
fic flows in network applications. The reconfigurable virtual network presented in Yin et al. (2011)
combines software virtual routers with several partially-reconfigurable hardware virtual routers
that are configured using dynamic reconfiguration. Functions such as header verification, check-
sum verification, IP lookup, ARP lookup, and time-to-live updates, are implemented in PR regions
and loaded as needed. The forwarding table for the virtual router can also be updated via the PCI
bus. Using PR was shown to offer better flexibility and forwarding performance compared to a
fixed hardware implementation.

Within space applications, Osterloh et al. (2009) describes the implementation of the System-
on-Chip Wire (SoCWire) architecture on a partially reconfigurable Virtex-4 FPGA. SoCWire is a
well-established Network-on-Chip protocol in the space community, supporting link initialisation,
credit-based flow control, detection of link errors, link error recovery, hot-plug ability, and more.
In this work, the SoCWire routing architecture is implemented in a static region and the processing
elements (PEs) are implemented in the PRRs, enabling dynamic loading and unloading of PEs based
on processing requirements.

PR has also been used extensively in high energy physics experiments. It was used in the
Compressed Baryonic Matter experiment conducted at the Facility for Antiproton and Ion
Research in Darmstadt, Germany (Gao et al. 2009). This experiment used an Active Buffer Board
(ABB) for receiving, buffering, and forwarding hit data. In a high energy physics experiment,
since the surrounding conditions can change, it is required that the ABB functionality change
post-installation. PR was also used in the ALICE (A Large Ion Collider Experiment) experiment
conducted in the CERN Large Hadron Collidor (LHC) (Papadimitriou et al. 2010). Special photo-
detectors were used to monitor particles generated by the collisions in the LHC. A collection of
120 Xilinx Virtex-4 FX FPGAs with PR were used for first level processing and data reduction on
the photo-detector outputs.

Applications that deal with changing environments are ideal candidates for PR systems, as the
varying compute modules can be loaded as needed at runtime. Most of these applications have been
designed in an ad-hoc manner, rather than using a specific high-level flow, but they demonstrate
the applicability of PR in a range of domains.

6.2 System Cost Reduction

PR can help reduce overall system cost by enabling time multiplexing of functionality on a smaller
chip instead of a larger FPGA. Since the energy consumption of smaller chips is generally lower,
this also helps reduce overall cost. PR has been demonstrated to be useful in audio and video pro-
cessing applications, such as MP3 decoding (Taghipour et al. 2008) and JPEG encoding (Bouchoux
et al. 2004). As the logic availability in older generation FPGAs was limited, these functions would
be temporally partitioned into smaller tasks to be performed sequentially using subsequent con-
figurations of the same PR region. In Khraisha and Lee (2010), a PR-based scalable H.264/AVC

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:30 K. Vipin and S. A. Fahmy

deblocking filter architecture is described. The filter adapts to different user requirements at run-
time. A real-time video processing system using PR is described in Bhandari et al. (2009), where
different image processing filters are implemented in the same reconfigurable region to reduce re-
source requirements and power consumption. In Birla and Vikram (2008), the AdaBoost algorithm
for human detection is implemented on a Virtex-4 FPGA using PR. Two computationally intensive
tasks, integral image computation and feature extraction/decision are alternately implemented in
a single PRR, saving significant area.

Other such applications include using the same PR region to implement different stages of
hardware cryptographic functions (Patterson 2000) and time multiplexing different stages of im-
age/video processing (Bhandari et al. 2009; Krill et al. 2010). In Noguera and Kennedy (2007), the
authors propose a method for power saving in networks by changing the implementation of the
same function under different conditions. By closely monitoring environmental changes (number
of users, time of day, distance from the central node, etc.) and adapting the implementation ac-
cordingly, network power consumption was reduced, potentially also improving reliability due to
the lower thermal footprint.

6.3 Reliability

A hurdle in the use of FPGAs in space applications is the effect of Single Event Upsets (SEUs)
(Ceschia et al. 2003), which are changes of state caused by ions or electro-magnetic radiation strik-
ing a sensitive node in a micro-electronic device such as semiconductor memory. SRAM-based
FPGAs are highly vulnerable to SEUs, which can lead to corruption in the configuration mem-
ory and serious system damage. PR has been proposed as a method for mitigating SEU effects on
SRAM-based FPGAs since it provides an auxiliary path to the configuration memory. In Bolchini
et al. (2007a, 2007b), the authors partition the FPGA into a number of regions in order to isolate
SEU errors, then apply duplication with comparison to ensure correct computation. Once an er-
ror is detected, that region is reconfigured. Another simple method to overcome SEUs using PR is
configuration scrubbing (Heiner et al. 2009). Here, the configuration data is stored in a radiation
hardened memory and the configuration controller reconfigures portions of the FPGA using this
memory periodically, called blind scrubbing. Since the configuration operation is glitchless, this
does not impact continuing operation. In a more advanced method, the configuration controller
reads data from the FPGA and detects the presence of an error and writes back configuration data
only if an error is present. Advanced SEU mitigation using both PR as well as traditional triple
modular redundancy (TMR) methods have also been suggested (Carmichael 2000, 2006).

Researchers have also proposed enabling redundancy in automotive electronics through PR to
improve reliability (Shreejith et al. 2013). Here, redundant electronic control units (ECUs) are im-
plemented in PR regions, and whenever an error condition is detected, the corresponding region
is reconfigured to recover from the error, while a redundant ECU with reduced performance acts
as a backup. PR has also been proposed for improving the security of automotive systems at the
network controller level (Shreejith and Fahmy 2015). In this work, the network controller is not
loaded onto a network node until the hardware and software checksums are confirmed as being
valid, thereby ensuring that tampered with nodes cannot access the network.

6.4 Computing Systems

Perhaps the most generalised use of PR is as a mechanism for integrating accelerator hardware
within general purpose computing systems. PR here serves the purpose of integrating adaptable
hardware with fixed compute interfaces. The dynamic instruction set computer (DISC) (Wirthlin
and Hutchings 1995) supports demand-driven modification of its instruction set. Each instruction
is implemented as an independent circuit module, and these are paged into hardware in real time

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:31

as dictated by the application. Hardware limitations are eliminated by replacing unused instruc-
tion modules with usable instructions at runtime. The concept of high-performance reconfigurable
computing has also been proposed (El-Araby et al. 2007). Here, the FPGA takes on a significant
portion of a large scientific application, with PR allowing the fabric to be used by different com-
putational steps at runtime as in the case of system cost reduction just discussed; but in this case,
the applications are too large to fit on a single FPGA.

In Steiner (2008), autonomous computing systems were discussed, with placement and routing
implemented on the FPGA fabric itself, allowing the FPGA to create new circuit bitstreams, for
self-modifying hardware. The main challenge is the logic overhead of implementing these tools
and the slow speed of creating new bitstreams.

An emerging application of PR is in accelerated cloud computing (Byma et al. 2014). Microsoft
has already presented a comprehensive demonstration of the benefits of FPGAs in the datacen-
ter applied to Bing search (Putnam et al. 2014), although published implementations do not use
PR. PR can extend this approach to allow integration of custom hardware accelerators that can be
dynamically changed at runtime. PR allows virtualisation of a single FPGA device into multiple
virtual FPGAs by hosting multiple accelerators concurrently in different PR regions (Fahmy et al.
2015). Here, each PR region acts as a virtual FPGA (vFPGA) on a commercial FPGA development
board. The required drivers and the virtualisation environment (hypervisor) run on server ma-
chines hosting the FPGA boards. Work in this area is gaining significant attention. Kachris and
Soudris (2016) provide a comprehensive survey on FPGA-based hardware accelerators for cloud
computing.

FPGAs, in general, offer high performance in neural network implementations as demonstrated
by Chinese search engine company, Baidu (Wirbel 2014). But many of these applications require
adaptation of the inference computation to the task at hand. Torresen et al. (2008) present an on-
line evolvable pattern recognition system, where the classification module is dynamically evolved
using PR. Here, a processor configures a PR region with different classification modules to evaluate
the input pattern.

As discussed in Section 3.1.4, the OpenCL compute framework has been ported to FPGA plat-
forms. PR allows dynamic loading of compute kernels, as needed, into a single PR region at runtime.
Virtual accelerators for cloud computing and OpenCL integration are perhaps the most promising
applications for PR in the near future.

6.5 Summary

As evident from the discussion, PR has demonstrated its applicability across a range of application
domains. Many of these have been demonstrated in a research environment or only as prototype
models. As discussed in Sections 2 and 3, hardware expertise requirements, constraints due to
device architectures, and limited tool support have limited more widespread adoption in the past.

However, we are now seeing a renewed interest in hardware virtualisation, with the vendors
playing an important part in facilitating this with better architectures and tools (Intel 2017b; Xilinx
Inc. 2017a). It remains the case, however, that these tools address the computing systems integra-
tion aspect of PR, rather than the more general adaptive systems idea. Recent improvements such
as the direct interfacing between PCIe and reconfiguration controller in Xilinx MCAP and the
sector-based architecture of the Altera Stratix 10 promise to improve support further. Further ar-
chitectural improvements will be necessary. These include more built-in hard macros (including
memory controllers), improving the relative positions of these hard macros (PCIe, Ethernet, etc.)
to maximise the area available for PRRs, and increasing the number of reconfiguration controllers
and their reconfiguration speed.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:32 K. Vipin and S. A. Fahmy

7 CONCLUSIONS AND FUTURE DIRECTIONS

PR has evolved significantly over recent years and found use in a diverse range of applications. The
design of PR systems remains difficult and hence only accessible to FPGA experts. Many published
techniques for overcoming the limitations of vendor tools have slowly become obsolete as a result
of the increasing heterogeneity of modern devices and less open access provided by vendors. Since
many techniques are also heavily tied to specific architectures, with their evolution, these tools
can become unusable. As a result of these difficulties, most systems that use PR at present must be
designed at a low level with detailed hardware design expertise required.

The emerging interest in using FPGAs in the datacenter represents the first widespread use of
PR in deployed systems, and there remain numerous challenges to fully virtualise FPGA resources
using PR. The trends toward more autonomous systems in areas such as automotive, communi-
cation, and aerospace applications also presents an opportunity well-suited to PR system design.
To truly bring PR system design into the mainstream, we believe there are a number of research
challenges in need of attention:

—At the architecture level, how to better support the idea of multiple loadable accelerators
with easy relocation and reconfiguration, particularly on commercial devices.

—In methods, how to bring together the strong body of research done to date to overcome
the limitations of existing flows, and abstracting away the hardware aspects through au-
tomation from high-level descriptions.

—In frameworks and applications, finding better application-oriented ways of describing
adaptive systems that can be automatically mapped to PR implementations.

—At the management level, improved abstraction to allow loading and unloading of new
configurations similarly to dynamic loading and unloading of software modules.

—Exploring how autonomously self-adaptive systems can be built that combine reconfigu-
ration capability with intelligence and the ability to adapt bitstream capabilities.

This article has thoroughly reviewed all aspects of dynamic and partial reconfiguration in the
literature to present the reader with a structured overview of the research to date and pose a num-
ber of challenges we believe stand in the way of more widespread adoption of PR. We are confident
that with renewed interest in this area, these challenges will be addressed by the community in a
way that finally brings PR to the mainstream.

APPENDIX-I: LIST OF ABBREVIATIONS/ACRONYMS

ALM Adaptive Logic Module

ASIC Application Specific Integrated Circuits

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CLB Configurable Logic Block

DPGA Dynamically Programmable Gate Arrays

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

EDA Electronic Design Automation

FPGA Field Programmable Gate Arrays

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:33

HLS High-Level Synthesis

ICAP Internal Configuration Access Port

ILP Integer Linear Programming

JTAG Joint Test Action Group

LAB Logic Array Block

LUT Look Up Table

MCAP Media Configuration Access Port

MC-FPGA Multi-Context Field Programmable Gate Arrays

OpenCL Open Computing Language

PCAP Processor Configuration Access Port

PCIe Peripheral Component Interconnect express

PL Programmable Logic

PLC Programmable Logic Cell

PLL Phase Locked Loop

PR Partial Reconfiguration

PRR Partially Reconfigurable Region

PS Processing System

RCM Reconfigurable Context Memory

RTL Register Transfer Level

SoC System on a Chip

SRAM Synchronous Random Access Memory

SDM Secure Digital Managers

SDR Software Defined Radio

SEU Single Event Upset

TBUF Tri-state Buffer

UCF User Constraints File

UML Unified Modeling Language

VHDL Very High-speed integrated circuit Hardware Description Language

XML eXtensible Markup Language

XDL Xilinx Description Language

XST Xilinx Synthesis Technology

REFERENCES

S. N. Adya and I. L. Markov. 2001. Fixed-outline floorplanning through better local search. In Proceedings of ACM/IEEE

International Conference on Computer Design. 328–334.
A. Agne, M. Happe, A. Keller, E. LÃbbers, B. Plattner, M. Platzner, and C. Plessl. 2014. ReconOS: An operating system

approach for reconfigurable computing. IEEE Micro 34, 1 (Jan. 2014), 60–71.
Altera. 2013a. Design Planning for Partial Reconfiguration. Altera.
Altera. 2013b. Quartus II Handbook Version 13.1. Altera.
Altera. 2016a. Arria 10 CvP Initialization and Partial Reconfiguration over PCI Express User Guide. Altera.
Altera. 2016b. Quartus Prime Standard Edition Handbook. Altera.
Altera. 2017. ug-partrecon: Partial Reconfiguration IP Core. Altera.
Atmel. 2013. AT40K05, AT40K10, AT40K20, AT40K40 Datasheet. Altera.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:34 K. Vipin and S. A. Fahmy

Ramzi Ayadi, Bouraoui Ouni, and Abdellatif Mtibaa. 2014. Integrated temporal partitioning and partial reconfiguration
techniques for design latency improvement. Evolving Systems 5, 2 (Jun. 2014), 133–141.

R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pionteck. 2014. Identifying homogenous reconfigurable regions in
heterogeneous FPGAs for module relocation. In Proceedings of International Conference on ReConFigurable Computing

and FPGAs (ReConFig14). 1–6.
P. Banerjee, M. Sangtani, and S. Sur-Kolay. 2011. Floorplanning for partially reconfigurable FPGAs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD) 30, 1 (Jan. 2011), 8–17.
K. Bazargan, R. Kastner, and M. Sarrafzadeh. 2000. Fast template placement for reconfigurable computing systems. IEEE

Design and Test of Computers 17, 1 (Jan. 2000), 68–83.
T. Becker, W. Luk, and P. Y. K. Cheung. 2007. Enhancing relocatability of partial bitstreams for run-time reconfiguration.

In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM).
C. Beckhoff, D. Koch, and J. Torresen. 2012. GoAhead: A partial reconfiguration framework. In Proceeding of IEEE Interna-

tional Symposium on Field-Programmable Custom Computing Machines (FCCM). 37–44.
C. Beckhoff, D. Koch, and J. Torresen. 2014. Portable module relocation and bitstream compression for Xilinx FPGAs. In

Proceedings of International Conference on Field Programmable Logic and Applications (FPL).
C. Beckhoff, D. Koch, and J. Torreson. 2013. Automatic floorplanning and interface synthesis of island style reconfig-

urable systems with GOAHEAD. In Proceedings of International Conference on Architecture of Computing Systems (ARCS).
Springer Berlin, 303–316.

S. U. Bhandari, S. Subbaraman, S. Pujari, and R. Mahajan. 2009. Real time video processing on FPGA using on the fly partial
reconfiguration. In Proceedings of International Conference on Signal Processing Systems (ICSPS). 244–247.

M. Birla and K. N. Vikram. 2008. Partial run-time reconfiguration of FPGA for computer vision applications. In Proceedings

of IEEE International Symposium on Parallel and Distributed Processing (IPDPS).
M. Boden, T. Fiebig, M. Reiband, and P. Reichel. 2008. GePaRD—A high-level generation flow for partially reconfigurable

designs. In Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
C. Bolchini, A. Miele, and M. D. Santambrogio. 2007a. TMR and partial dynamic reconfiguration to mitigate SEU faults in

FPGAs. In Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT).
C. Bolchini, D. Quarta, and M. D. Santambrogio. 2007b. SEU mitigation for SRAM-based FPGAs through dynamic partial

reconfiguration. In Proceedings of ACM Great Lakes Symposium on VLSI.
S. Bouchoux, E. Bourennane, and M. Paindavoine. 2004. Implementation of JPEG2000 arithmetic decoder using dynamic

reconfiguration of FPGA. In Proceedings of International Conference on Image Processing (ICIP).
G. Brebner. 1996. A Virtual Hardware Operating System for the Xilinx XC6200. Springer Berlin, 327–336.
S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow. 2014. FPGAs in the cloud: Booting virtualized hard-

ware accelerators with OpenStack. In Proceedings of the IEEE International Symposium on Field-Programmable Custom

Computing Machines (FCCM). 110–116.
D. Capalija and T. S. Abdelrahman. 2013. A high-performance overlay architecture for pipelined execution of data flow

graphs. In Proceedings of the International Conference on Field Programmable Logic and Applications (FPL).
C. Carmichael. 2000. XAPP216: Correcting Single-Event Upsets Through Virtex Partial Configuration. Xilinx Inc.
C. Carmichael. 2006. XAPP197: Triple Module Redundancy Design Techniques for Virtex FPGAs. Xilinx Inc.
M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin,

and A. Candelori. 2003. Identification and classification of single-event upsets in the configuration memory of SRAM-
based FPGAs. IEEE Transactions on Nuclear Science 50, 6 (Dec. 2003), 2088–2094.

George Charitopoulos, Iosif Koidis, Kyprianos Papadimitriou, and Dionisios Pnevmatikatos. 2015. Hardware Task Scheduling

for Partially Reconfigurable FPGAs. Springer International Publishing, Cham, 487–498.
C. S. Choi and H. Lee. 2006. An reconfigurable FIR filter design on a partial reconfiguration platform. In Proceedings of

Communications and Electronics (ICCE).
W. Chong, S. Ogata, M. Hariyama, and M. Kameyama. 2005. Architecture of a multi-context FPGA using reconfigurable

context memory. In Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS).
C. B. Ciobanu, D. N. Pnevmatikatos, K. D. Papadimitriou, and G. N. Gaydadjiev. 2013. FASTER run-time reconfiguration

management. In Proceedings of ACM International Conference on Supercomputing (ICS’13). ACM, 463–464.
C. Claus, F. H. Muller, J. Zeppenfeld, and W. Stechele. 2007a. A new framework to accelerate Virtex-II Pro dynamic partial

self reconfiguration. In Proceedings of IEEE International Symposium on Parallel & Distributed Processing, Workshops and

PhD Forum (IPDPSW).
C. Claus, W. Stechele, and A. Herkersdorf. 2007b. Autovision—A run-time reconfigurable MPSoC architecture for future

driver assistance systems. Information Technology 49 (2007), 181–186.
C. Claus, J. Zeppenfeld, F. Muller, and W. Stechele. 2007c. Using partial-run-time reconfigurable hardware to accelerate

video processing in driver assistance system. In Proceedings of Design, Automation & Test in Europe Conference & Exhi-

bition (DATE).

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:35

C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker. 2008. A multi-platform controller allowing for maximum
dynamic partial reconfiguration throughput. In Proceedings of International Conference on Field Programmable Logic and

Applications (FPL). 535–538.
K. Compton and S. Hauck. 2002. Reconfigurable computing: A survey of systems and software. ACM Computing Surveys

(CSUR) 34, 2 (June 2002), 171–210.
J. Coole and G. Stitt. 2015. Adjustable-cost overlays for runtime compilation. In Proceedings of the International Symposium

on Field-Programmable Custom Computing Machines (FCCM). 21–24.
A. DeHon. 1996. DPGA utilization and application. In Proceedings of ACM/SIGDA International Symposium on FPGAs.
A. DeHon and M. J Wilson. 2004. Nanowire-based sublithographic programmable logic arrays. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA). 123–132.
J. P. Delahaye, J. Palicot, C. Moy, and P. Leray. 2007. Partial reconfiguration of FPGAs for dynamical reconfiguration of a

software radio platform. In Proceedings of IST Mobile and Wireless Comms. Summit.
J. Delorme, J. Martin, A. Nafkha, C. Moy, F. Clermidy, P. Leray, and J. Palicot. 2008. A FPGA partial reconfiguration design

approach for cognitive radio based on NoC architecture. In Proceedings of International IEEE Northeast Workshop on

Circuits and Systems and TAISA Conference. 355–358.
Alberto Donato, Fabrizio Ferrandi, Massimo Redaelli, MarcoDomenico Santambrogio, and Donatella Sciuto. 2007. Caronte:

A methodology for the implementation of partially dynamically self-reconfiguring systems on FPGA platforms. In VLSI-

Soc: From Systems To Silicon. Vol. 240. Springer US, 87–109.
E. El-Araby, I. Gonzale, and T. El-Ghazawi. 2007. Performance bounds of partial run-time reconfiguration in high-

performance reconfigurable computing. In Proceedings of International Workshop on High-Performance Reconfigurable

Computing Technology and Applications (HPRCTA).
E. Eto. 2007. XAPP290: Difference-Based Partial Reconfiguration. Technical Report. Xilinx Inc.
S. A. Fahmy, J. Lotze, J. Noguera, L. Doyle, and R. Esser. 2009. Generic software framework for adaptive applications on

FPGAs. In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). 55–62.
S. A. Fahmy, K. Vipin, and S. Shreejith. 2015. Virtualized FPGA accelerators for efficient cloud computing. In Proceedings

of IEEE International Conference on Cloud Computing Technology and Science, Vancouver, Canada. 430–35.
Y. Feng and D. P. Mehta. 2006. Heterogeneous floorplanning for FPGAs. In Proceedings of International Conference on VLSI

Design.
A. A. Fohlich and L. F. Wanner. 2008. Operating system support for wireless sensor networks. Journal of Computer Science

4, 4 (2008), 272–281.
D. De La Fuente, J. Barba, X. Pena, J. C. Lopez, P. Penil, and P. P. Sanchez. 2015. Building a dynamically reconfigurable

system through a high development flow. In Proceedings of Forum on Specification and Design Languages (FDL).
S. Ganesan and R. Vemuri. 2000. An integrated temporal partitioning and partial reconfiguration technique for design

latency improvement. In Proceedings of Design, Automation and Test in Europe (DATE). 320–325.
W. Gao, K. Kugel, R. Manner, N. Abel, N. Meier, and U. Kebschull. 2009. DPR in high energy physics. In Proceedings of

Design, Automation & Test in Europe Conference & Exhibition (DATE).
D. Gohringer, J. Noguera, and J. Becker. 2010. Fast dynamic and partial reconfiguration data path with low hardware over-

head on Xilinx FPGAs. In Proceedings of IEEE International Symposium on Parallel & Distributed Processing, Workshops

and PhD Forum (IPDPSW).
M. Gokhale and D. Gomersall. 1997. High level compilation for fine grained FPGAs. In Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM). 165–173.
L. Gong and O. Diessel. 2011. ReSim: A reusable library for RTL simulation of dynamic partial reconfiguration. In Proceeding

of International Conference on Field-Programmable Technology. 1–8.
S. Guccione, D. Levi, and P. Sundararajan. 2004. JBits: Java Based Interface for Reconfigurable Computing. Technical Report.

Xilinx Inc.
G. Haiyun and C. Shurong. 2008. Partial reconfiguration bitstream compression for Virtex FPGAs. In Proceedings of Congress

on Image and Signal Processing (CISP).
S. Gimle Hansen, D. Koch, and J. Torresen. 2011. High speed partial run-time reconfiguration using enhanced ICAP hard

macro. In Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum.
J. Harkin, T. M. Mcginnity, and L. P. Maguire. 2004. Modeling and optimizing run-time reconfiguration using evolutionary

computation. ACM Transactions on Embedded Computing Systems (TECS) 3, 4 (Nov. 2004), 661–685.
S. Hauck, Z. Li, and E. Schwabe. 1998. Configuration compression for the Xilinx XC6200 FPGA. In Proceedings of IEEE

Symposium on FPGAs for Custom Computing Machines (FCCM).
S. Hauck, Z. Li, and E. Schwabe. 1999. Configuration compression for the Xilinx XC6200 FPGA. In Proceedings of IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.
J. R. Hauser and J. Wawrzynek. 1997. Garp: A MIPS processor with a reconfigurable coprocessor. In Proceedings of IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM).

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:36 K. Vipin and S. A. Fahmy

J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. 2009. FPGA partial reconfiguration via configuration scrubbing. In Proceedings

of International Conference on Field Programmable Logic and Applications (FPL).
E. L. Horta and J. W. Lockwood. 2001. PARBIT: A Tool to Transform Bitfiles to Implement Partial Reconfiguration of FIeld

Programmable Gate Arrays (FPGA). Washington University.
D. How and S. Atsatt. 2016. Sectors: Divide & conquer and softwarization in the design and validation of the Stratix-10

FPGA. In Proceedings of IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM).
M. Huebner, T. Becker, and J. Becker. 2004. Real-time LUT-based network topologies for dynamic and partial FPGA self-

reconfiguration. In Proceedings of Symposium on Integrated Circuits and Systems Design. 28–32.
C. Huriaux, O. Sentieys, and R. Tessier. 2014. FPGA architecture support for heterogeneous, relocatable partial bitstreams.

In Proceedings of International Conference on Field Programmable Logic and Applications (FPL).
H. M. Hussain, K. Benkrid, A. Ebrahim, A. T. Erdogan, and H. Seker. 2012. Novel dynamic partial reconfiguration im-

plementation of K-means clustering on FPGAs: Comparative results with GPPs and GPUs. International Journal of

Reconfigurable Computing (IJRC) 2012, Article ID 135926 (Jan.2012), 15 pages.
H. Hussain, K. Benkrid, and H. Seker. 2014. Novel dynamic partial reconfiguration implementations of the support vector

machine classifier on FPGA. Turkish Journal of Electrical Engineering & Computer Sciences 24 (2014), 3371–3387.
Intel. 2017a. UG-20066: Partial Reconfiguration Solutions IP User Guide.
Intel. 2017b. UG-OCL002 Intel FPGA SDK for OpenCL: Programing Guide.
A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. 2016a. DeCO: A DSP block based FPGA accelerator overlay with

low overhead interconnect. In Proceedings of the International Symposium on Field-Programmable Custom Computing

Machines (FCCM). 1–8.
A. K. Jain, D. L. Maskell, and S. A. Fahmy. 2016b. Throughput oriented FPGA overlays using DSP blocks. In Proceedings of

the Design, Automation and Test in Europe Conference (DATE). 1628–1633.
A. Jara-Berrocal and A. Gordon-Ross. 2009. Runtime temporal partitioning assembly to reduce FPGA reconfiguration time.

In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig).
C. Kachris and D. Soudris. 2016. A survey on reconfigurable accelerators for cloud computing. In Proceedings of International

Conference on Field Programmable Logic and Applications (FPL). 1–10.
H. Kalte, G. Lee, M. Porrmann, and U. Rückert. 2005. REPLICA: A bitstream manipulation filter for module relocation

in partial reconfigurable systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium

(IPDPS).
H. Kalte and M. Porrmann. 2006. REPLICA2Pro: Task relocation by bitstream manipulation in Virtex-II/Pro FPGAs. In

Proceedings of Conference on Computing Frontiers.
I. Kennedy. 2003. Exploiting redundancy to speedup reconfiguration of an FPGA. In Proceedings of the International Con-

ference on Field Programmable Logic and Applications (FPL). 262–271.
R. Khraisha and J. Lee. 2010. A scalable H.264/AVC deblocking filter architecture using dynamic partial reconfiguration. In

Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).
D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich, M. Feilen, and W. Stechele. 2012. Partial recon-

figuration on FPGAs in practice; Tools and applications. In Proceedings of ARCS Workshops (ARCS). 1–12.
M. Koester, W. Luk, J. Hagemeyer, and M. Porrmann. 2009. Design optimizations to improve placeability of partial recon-

figuration modules. In Proceedings of Design, Automation & Test in Europe Conference & Exhibition (DATE).
B. Krill, A. Amira, A. Ahmad, and H. Rabah. 2010. A new FPGA-based dynamic partial reconfiguration design flow and

environment for image processing applications. In Proceedings of European Workshop on Visual Information Processing

(EUVIP). 226–231.
R. Kumar and A. Gordon-Ross. 2013. PRML: A modeling language for rapid design exploration of partially reconfigurable

FPGAs. In Proceedings of IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM).
117–120.

R. Kumar and A. Gordon-Ross. 2015. An automated high-level design framework for partially reconfigurable FPGAs. In
Proceedings of IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW).

Lattice Corp. 2003. ORCA Series 4 FPGAs. Lattice Semiconductor Corporation.
Z. Li, K. Compton, and S. Hauck. 2000. Configuration caching management techniques for reconfigurable computing. In

Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines (FCCM).
Z. Li and S. Hauck. 2001. Configuration compression for Virtex FPGAs. In Proceedings of IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM).
J. Lipsky. 2015. Retrieved from http://www.eetimes.com/document.asp?doc_id=1325499.
M. Liu, W. Kuehn, Z. Lu, and A. Jantsch. 2009a. Run-time partial reconfiguration speed investigation and architectural

design space exploration. In Proceedings of the International Conference on Field Programmable Logic and Applications

(FPL).

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

http://www.eetimes.com/document.asp?doc_id$=$1325499

FPGA Dynamic and Partial Reconfiguration: A Survey 72:37

S. Liu, R. N. Pittman, and A. Forin. 2009b. Minimizing Partial Reconfiguration Overhead with Fully Streaming DMA Engines

and Intelligent ICAP Controller. Technical Report MSR-TR-2009- 150. Microsoft Research.
J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor. 2001. Reprogrammable network packet processing on the field

programmable port extender (FPX). In Proceedings of ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA).
J. Lotze, S. A. Fahmy, J. Noguera, B. Ozgul, L. Doyle, and R. Esser. 2009. Development framework for implementing FPGA-

based cognitive network nodes. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM).
Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev. 2009. Online Task Scheduling for the FPGA-Based Partially Reconfigurable

Systems. Springer Berlin, 216–230.
Y. Lu, T. Marconi, G. N. Gaydadjiev, K. Bertels, and R. J. Meeuws. 2008. A self-adaptive on-line task placement algorithm

for partially reconfigurable systems. In Proceedings of Parallel and Distributed Processing Symposium (IPDPS).
W. Luk, N. Shirazi, and P. Y. K. Cheung. 1996. Modelling and optimising run-time reconfigurable systems. In Proceedings of

IEEE Symposium on FPGAs for Custom Computing Machines (FCCM).
W. Luk, N. Shirazi, and P. Y. K. Cheung. 1997. Compilation tools for run-time reconfigurable designs. In Proceedings of IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM). 56–65.
P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. 2006. Invited paper: Enhanced architectures, design method-

ologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs. In Proceedings of International Conference on Field

Programmable Logic and Applications (FPL).
P. Lysaght and J. Stockwood. 1996. A simulation tool for dynamically reconfigurable field programmable gate arrays. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 4, 3 (Sept. 1996), 381–390.
M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. 2007. The Erlangen slot machine: A dynamically reconfigurable FPGA-

based computer. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 47, 1 (Apr. 2007),
15–31.

P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. D. Ciano, J. D. Legat, D. Aulagnier, C. Gamrat, R. Liberati, V.
L. Barba, P. Cuvelier, B. Rousseau, and P. Gelineau. 2008. An evaluation of dynamic partial reconfiguration for signal
and image processing in professional electronics applications. EURASIP Journal on Embedded Systems 2008, Article ID
367860 (2008), 11 pages.

A. Montone, M. D. Santambrogio, D. Sciuto, and S. O. Memik. 2010. Placement and floorplanning in dynamically reconfig-
urable FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 3, 4 (Nov. 2010), 24:11–24:34.

National. 1993. Configurable Logic Array (CLAy) Data Sheet. National Semiconductor.
B. Navas, I. Sander, and J. Oberg. 2013. The RecoBlock SoC platform: A flexible array of reusable run-time-reconfigurable

IP-blocks. In Proceedings of Design, Automation & Test in Europe Conference & Exhibition. 833–838.
J. Noguera and I. O. Kennedy. 2007. Power reduction in network equipment through adaptive partial reconfiguration. In

Proceedings of International Conference on Field Programmable Logic and Applications (FPL). 240–245.
R. T. Ong. 1995. Programmable Logic Device which stores more than one configuration and means for switching configu-

rations. US patent 5,426,378.
B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe. 2009. Dynamic partial reconfiguration in space applications. In Pro-

ceedings of NASA/ESA Conference on Adaptive Hardware and Systems.
J. H. Pan, T. Mitra, and W. Wong. 2004. Configuration bitstream compression for dynamically reconfigurable FPGAs. In

Proceedings of IEEE/ACM International Conference on Computer Aided Design (ICCAD).
K. Papadimitriou, A. Anyfantis, and A. Dollas. 2010. An effective framework to evaluate dynamic partial reconfiguration

in FPGA systems. IEEE Transactions on Instrumentation and Measurement 59, 6 (June 2010), 1642–1651.
K. Papadimitriou, A. Dollas, and S. Hauck. 2011. Performance of partial reconfiguration in FPGA systems: A survey and

cost model. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 4, 4 (Dec. 2011), 36:1–36:24.
C. Patterson. 2000. High performance DES encryption in Virtex FPGAs using JBits. In Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM). 113–121.
M. Peattie. 2009. Using a Microprocessor to Configure Xilinx FPGAs via Slave Serial or SelectMAP Mode. Technical Report.

Xilinx Inc.
T. H. Pham, S. A. Fahmy, and I. V. McLoughlin. 2017. An end-to-end multi-standard OFDM transceiver architecture using

FPGA partial reconfiguration. IEEE Access 5 (2017), 21002–21015.
M. Platzner, J. Teich, and N. Wehn. 2010. Dynamically Reconfigurable Systems. Springer Netherlands.
A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto, and M. D. Santambrogio. 2016. Resource-efficient scheduling for partially-

reconfigurable FPGA-based systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 189–197.
A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J.

Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. 2014. A reconfigurable fabric for accelerating large-scale datacenter services. In Proceedings

of the International Symposium on Computer Architecture. 13–24.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

72:38 K. Vipin and S. A. Fahmy

S. Raaijmakers and S. Wong. 2007. Run-time partial reconfiguration for removal, placement and routing on the Virtex-II
Pro. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL).

M. Rabozzi, R. Cattaneo, T. Becker, W. Luk, and M. D. Santambrogio. 2015. Relocation-aware floorplanning for partially-
reconfigurable FPGA-based systems. In Proceedings of IEEE International Parallel and Distributed Processing Symposium

Workshop (IPDPSW). 97–104.
M. Rabozzi, J. Lillis, and M. D. Santambrogio. 2014. Floorplanning for partially-reconfigurable FPGA systems via mixed-

integer linear programming. In Proceedings of IEEE International Symposium on Field-Programmable Custom Computing

Machines (FCCM).
V. Rana, S. Murali, D. Atienza, M. D. Santambrogio, L. Benini, and D. Sciuto. 2009. Minimization of the reconfiguration

latency for the mapping of applications on FPGA-based systems. In Proceedings of IEEE/ACM International Conference

on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
T. A. Reis and A. A. Fröhlich. 2009. Operating system support for difference-based partial hardware reconfiguration. In

Proceedings of IEEE/IFIP International Symposium on Rapid System Prototyping (RSP). 75–80.
M. D. Santambrogio, V. Rana, and D. Sciuto. 2008. Operating system support for online partial dynamic reconfiguration

management. In Proceedings of International Conference on Field Programmable Logic and Applications (FPL). 455–458.
A. Schallenberg, W. Nebel, A. Herrholz, P.A. Hartmann, K. Grüttner, and F. Oppenheimer. 2010. Dynamically Reconfig-

urable Systems (1st ed.). Springer, Chapter POLYDYN-Object-Oriented Modelling and Synthesis Targeting Dynamically
Reconfigurable FPGAs, 139–158.

A. Schallenberg, W. Nebel, A. Herrholz, P. A. Hartmann, and F. Oppenheimer. 2009. OSSS+R: A framework for application
level modelling and synthesis of reconfigurable systems. In Proceedings of the Design, Automation and Test in Europe

Conference (DATE). 970–975.
S. Shreejith, B. Banarjee, K. Vipin, and S. A. Fahmy. 2015. Dynamic cognitive radio on the Xilinx Zynq hybrid FPGA. In

Proceedings of International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM).
S. Shreejith and S. A. Fahmy. 2015. Security aware network controller for next generation automotive embedded systems.

In Proceedings of Design Automation Conference (DAC).
S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz. 2013. An approach for redundancy in FlexRay networks using

FPGA partial reconfiguration. In Proceedings of the Design, Automation and Test in Europe Conference (DATE).
L. Singhal and E. Bozorgzadeh. 2007. Multi-layer floorplanning for reconfigurable designs. IET Computers & Digital Tech-

niques 1, 4 (July 2007), 276–294.
G. S. Snider and R. S. Williams. 2007. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nan-

otechnology 18, 3 (2007), 035204.
A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood. 2011. OpenPR: An open-source partial-reconfiguration toolkit

for Xilinx FPGAs. In Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops and

Phd Forum (IPDPSW). 228–235.
C. Steiger, H. Walder, and M. Platzner. 2004. Operating systems for reconfigurable embedded platforms: Online scheduling

of real-time tasks. IEEE Trans. Comput. 53, 11 (Nov. 2004).
N. J. Steiner. 2008. Autonomous Computing Systems. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.
N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French. 2011. Torc: Towards an open-source tool flow. In

Proceedings of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).
G. Stitt and J. Coole. 2011. Intermediate fabrics: Virtual architectures for near-instant FPGA compilation. IEEE Embedded

Systems Letters 3, 3 (2011), 81–84.
Tabula. 2010. ABAX Product Brief. Technical Report. Tabula.
H. Taghipour, J. Frounchi, and M. H. Zarifi. 2008. Design and implementation of MP3 decoder using partial dynamic recon-

figuration on Virtex-4 FPGAs. In Proceedings of International Conference on Computer and Communication Engineering.
E. Tau, I. Eslick, D. Chen, J. Brown, and A. DeHon. 1995. A first generation DPGA implementation. In Proceedings of the

Canadian Workshop on Field-Programmable Devices (FPD). 138–143.
T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk, and P. Y. K. Cheung. 2005. Reconfigurable computing:

Architectures and design methods. IEE Proceedings—Computers and Digital Techniques 152, 2 (Mar. 2005), 193–207.
J. Torresen, G. A. Senland, and K. Glette. 2008. Partial reconfiguration applied in an on-line evolvable pattern recognition

system. In Proceedings of The Nordic Microelectronics Event (NORCHIP).
S. Trimberger, D. Carberry, A. Johnson, and J. Wong. 1997. A time-multiplexed FPGA. In Proceedings of IEEE Symposium

on FPGAs for Custom Computing Machines (FCCM). 22–28.
K. Vipin and S. A. Fahmy. 2011. Efficient region allocation for adaptive partial reconfiguration. In Proceedings of the Inter-

national Conference on Field Programmable Technology (FPT). 1–6.
K. Vipin and S. A. Fahmy. 2012a. Architecture-aware reconfiguration-centric floorplanning for partial reconfiguration. In

Proceedings of the International Symposium on Applied Reconfigurable Computing (ARC). 13–25.

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

FPGA Dynamic and Partial Reconfiguration: A Survey 72:39

K. Vipin and S. A. Fahmy. 2012b. A high speed open source controller for FPGA partial reconfiguration. In Proceedings of

IEEE International Conference on Field-Programmable Technology (FPT).
K. Vipin and S. A. Fahmy. 2013. An automated partitioning scheme for partial reconfiguration based adaptive systems. In

Proceedings of Reconfigurable Architecture Workshop (RAW).
K. Vipin and S. A. Fahmy. 2014a. DyRACT: A partial reconfiguration enabled accelerator and test platform. In Proceedings

of the International Conference on Field Programmable Logic and Applications (FPL).
K. Vipin and S. A. Fahmy. 2014b. ZyCAP: Efficient partial reconfiguration management on the Xilinx Zynq. IEEE Embedded

Systems Letters 6, 3 (Sept. 2014), 41–44.
K. Vipin and S. A. Fahmy. 2015. Mapping adaptive hardware systems with partial reconfiguration using CoPR for Zynq. In

Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
F. Wang and J. J. Jean. 2012. Architecture and operating system support for two-dimensional runtime partial reconfigura-

tion. The Journal of Supercomputing 59, 2 (2012), 610–635.
L. Wirbel. 2014. Xilinx SDAccel: A Unified Development Environment for Tomorrow’s Data Center. Technical Report. Xilinx

Inc.
M. J. Wirthlin and B. L. Hutchings. 1995. A dynamic instruction set computer. In Proceedings of IEEE Symposium on FPGAs

for Custom Computing Machines.
Z. Xiao, D. Koch, and M. Lujan. 2016. A partial reconfiguration controller for Altera Stratix V FPGAs. In Proceedings of

International Conference on Field Programmable Logic and Applications (FPL).
Xilinx Inc. 1996. Programmable Logic Data Book.
Xilinx Inc. 2003. DS031: Virtex-II Platform FPGAs.
Xilinx Inc. 2004a. XAPP151: Virtex Series Configuration Architecture User Guide.
Xilinx Inc. 2004b. Xilinx Device Drivers Documentation. Xilinx Inc.
Xilinx Inc. 2006. DS280: OPB HWICAP. Xilinx Inc.
Xilinx Inc. 2008. UG070: Virtex-4 FPGA User Guide. Xilinx Inc.
Xilinx Inc. 2010. DS586: XPS HWICAP. Xilinx Inc.
Xilinx Inc. 2011a. DS083: Virtex-II Pro and Virtex-II Pro-X Platform FPGAs. Xilinx Inc.
Xilinx Inc. 2011b. UG360: Virtex 6 FPGA Configuration User Guide. Xilinx Inc.
Xilinx Inc. 2013a. UG585: Zynq-7000 All Programmable SoC Technical Reference Manual. Xilinx Inc.
Xilinx Inc. 2013b. UG682: PlanAhead User Guide. Xilinx Inc.
Xilinx Inc. 2014. UG910: Vivado Design Suite User Guide. Xilinx Inc.
Xilinx Inc. 2015. UG570: UltraScale Architecture Configuration. Xilinx Inc.
Xilinx Inc. 2016. UltraScale Architecture and Product Overview. Xilinx Inc.
Xilinx Inc. 2017a. UG1023: SDAccel Environment User Guide. Xilinx. Inc.
Xilinx Inc. 2017b. UG893: Vivado Design Suite User Guide. Xilinx Inc.
Xilinx Inc. 2017c. UG909: Vivado Design Suite User Guide Partial Reconfiguration. Xilinx Inc.
D. Yin, D. Unnikrishnan, Y. Liao, L. Gao, and R. Tessier. 2011. Customizing virtual networks with partial FPGA reconfigu-

ration. ACM SIGCOMM Computer Communication Review 41, 1 (Jan. 2011), 57–64.
J. Yuan, S. Dong, X. Hong, and Y. Wu. 2005. LFF algorithm for heterogeneous FPGA floorplanning. In Proceedings of Asia

and South Pacific Design Automation Conference (ASP-DAC). 1123–1126.
W. Zhang, N. K. Jha, and L. Shang. 2009. A hybrid nano/CMOS dynamically reconfigurable system—Part I: Architecture.

ACM Journal on Emerging Technologies in Computing Systems 5, 4 (2009), 16:1–16:30.

Received December 2016; revised February 2018; accepted February 2018

ACM Computing Surveys, Vol. 51, No. 4, Article 72. Publication date: July 2018.

